Gregory I. Bain Eiji Itoi Giovanni Di Giacomo Hiroyuki Sugaya *Editors*

Normal and Pathological Anatomy of the Shoulder

Normal and Pathological Anatomy of the Shoulder

Gregory I. Bain • Eiji Itoi Giovanni Di Giacomo • Hiroyuki Sugaya Editors

Normal and Pathological Anatomy of the Shoulder

Editors	
Gregory I. Bain	Giovanni Di Giacomo
Department of Orthopedics and Trauma	Orthopaedic
Flinders University	Concordia Hospital for Special Surgery
Adelaide	Rome
South Australia	Italy
Australia	
	Hiroyuki Sugaya
Eiji Itoi	Funabashi Orthopaedic Sports
Department of Orthopaedic Surgery	Med Cn Shoulder and Elbow Service
Tohoku University School of Medicine	Chiba
Sendai	Japan

ISBN 978-3-662-45718-4 ISBN 978-3-662-45719-1 (eBook) DOI 10.1007/978-3-662-45719-1

Library of Congress Control Number: 2015939584

Springer Heidelberg New York Dordrecht London © ISAKOS 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Miyagi Japan

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media (www.springer.com)

Foreword

This book is a product of the upper extremity committee of ISAKOS. While the anatomy of the shoulder has been studied well for many centuries and has not changed, the authors of this book highlight what has improved: our ability to evaluate and understand anatomy in health and disease in a dynamic and living body. In the past, researchers have been limited to cadaver dissections to uncover the secrets of functional anatomy. Those works have been important for our understanding, but they have limitations.

During the last 30 years, dramatic changes in the tools available for practitioners and researchers have become available. The arthroscope has been central to this effort but has had a great deal of help from imaging modalities including MRI, CT and ultrasound. These new tools have allowed greater understanding of how the anatomy is modified by disease processes. This book points us to a better understanding of normal anatomy and its variations as well as the changes that have occurred secondary to pathological processes. These insights will guide us to perform the necessary reconstructions to overcome functional losses. This enhanced understanding will also prevent us from having complications that will occur without the clear knowledge of how the pathological process has changed the anatomy.

We all are indebted to Drs Gregory Bain, Eiji Itoi and all the members of the upper extremity committee of ISAKOS for their work. The insights of this important manuscript will extend beyond the membership of ISAKOS to have an impact on the wider surgical community and the patients they manage. An additional benefit is that this book will form the basis for future research as we continue our quest to maintain the function of the musculoskeletal system in a minimally invasive and costeffective way.

Jany B. Pochling

Gary G. Poehling, MD Professor of Orthopedics Wake Forest University Medical Center Emeritus Editor in Chief Journal of Arthroscopy

Preface

Introduction

The principles of human gross anatomy have been developed for centuries and are the foundation of current medicine. Over the last two decades, there have been many advances in biomechanics, imaging and arthroscopy, which have enhanced our understanding of clinical, surgical and functional anatomy.

Why Anatomy and Pathology?

Pathology is the basic science of medicine, and anatomy is the basic science of surgery. Despite advances in both basic sciences, the concept of pathoanatomy is often overlooked. The way in which normal anatomy is affected by pathological processes such as trauma, disease and degeneration still requires further investigation.

The Monograph

The aim of this monograph is to bring together the newer concepts of shoulder anatomy and patho-anatomy. It commences with a discussion on comparative and developmental anatomy. For each clinically relevant anatomical area, there is an overview of gross anatomy; a discussion of the ultra-structure, imaging and arthroscopy and a review of how the anatomy is affected by pathological processes.

In creating this document, we have exchanged many concepts of applied, pathological and surgical anatomy of the shoulder. The relevant historical and latest literature has been analysed to develop new concepts, which are shared in this monograph. We trust that dissemination of this new understanding will advance the assessment and management of patients with disorders of the shoulder.

The Editors and Authors

The upper extremity committee of ISAKOS is enriched with many surgeons who have advanced the science of surgical anatomy over the last 20 years. The publication was developed and principally written by the members of the committee.

Acknowledgement

We sincerely thank the editors and authors for their time, effort and expertise in enabling this project to be completed. We acknowledge the significant contribution of the following individuals:

- Editor Giovanni Di Giacomo, Italian Orthopaedic Surgeon and Anatomist, who also provided many wonderful images of cadaveric dissections from his book *Atlas of Functional Shoulder Anatomy* [1]
- Henry V Crock AO, Australian Orthopaedic Surgeon and Anatomist, for providing the detailed vascular anatomical images that were reproduced from his book *An Atlas of Vascular Anatomy of the Skeleton and Spinal Cord* [2]
- Mark Ross, Australian Orthopaedic Surgeon, for providing many excellent images from his cadaveric dissections
- Pau Golano, Spanish Anatomist who tragically passed away at the time of preparation of this manuscript. His passing is a great loss to Orthopaedic Surgery. We were able to obtain a few of his images, which are beautifully demonstrated in the book.
- Martin Langer, German Orthopaedic Surgeon, Artist and Anatomist, for his spectacular graphic illustrations
- Ron Heptinstall, never quite retired registered nurse, photographer and graphic artist, for providing and bringing to life many of the graphics
- Rebecca Lea and Enid Hillard from my private office and Amy Watts and Don Branwell for their assistance in copyright details, collating, referencing and editing

Gregory I. Bain Editor Deputy Chairman, Upper Extremity Committee, ISAKOS Professor of Upper Limb Surgery and Research Department of Orthopaedic Surgery Flinders University Adelaide, Australia **Eiji Itoi** Editor Chairman, Upper Extremity Committee, ISAKOS Professor, Department of Orthopaedic Surgery, Tohoku University School of Medicine Sendai, Japan

References

- Di Giacomo G, Costantini A, Pouliart N, De Vita A, editors. Atlas of functional shoulder anatomy. Italia: Springer; 2008.
- Henry V, Crock AO. An atlas of vascular anatomy of the skeleton and spinal cord. Published by Martin Dunitz; 1996. Henry V Crock AO maintains copyright of these images.

Contents

Part I Introduction

1	Comparative Anatomy of the Shoulder	3
2	Developmental Anatomy of the Shoulder Teresa Vázquez, Javier Calvo, Jose Sanudo, and Emilio Calvo	15
Par	t II Osseous Structures	
3	Proximal Humerus Ronald L. Diercks	29
4	Glenoid Matthew T. Provencher, Rachel F. Frank, Daniel J. Gross, and Petar Golijanin	35
5	Coracoid Process	47
6	Acromion and Coracoacromial Arch	57
7	Scapular Body Tom Clement Ludvigsen	63
8	Clavicle Anatomy Joideep Phadnis and Gregory I. Bain	71
Par	t III Gleno-Humeral Joint	
9	Glenoid Labrum John Apostolakos, Justin S. Yang, Alexander R. Hoberman, Monica Shoji, Jeffrey H. Weinreb, Andreas Voss, Jessica DiVenere, and Augustus D. Mazzocca	83
10	Glenohumeral Capsule and Ligaments	93

11	Rotator Cuff Interval Felix H. Savoie, Carina Cohen, and Katherine C. Faust	101
12	Imaging of the Labrum Eiji Itoi and Shin Hitachi	109
13	Pathoanatomy of Glenohumeral Instability	115
14	Biceps Tendon Vicente Gutierrez, Max Ekdahl, and Levi Morse	123
Par	t IV Other Joints and Bursae	
15	Subacromial Space	141
16	Scapulothoracic and Subscapular Bursae	155
17	Acromioclavicular Joint Yon-Sik Yoo	159
18	Pathoanatomy of Acromioclavicular Joint Instability Joideep Phadnis, Gregory I. Bain, and Klaus Bak	171
19	Sternoclavicular Joint Anatomy and Pathology Michael B. O'Sullivan, Justin Yang, Benjamin Barden, Hardeep Singh, Jessica Divenere, and Augustus D. Mazzocca	185
Par	t V Musculo-Tendinous Structures	
20	Rotator Cuff Akimoto Nimura, Keiichi Akita, and Hiroyuki Sugaya	199
21	Ultrastructure and Pathoanatomy of the Rotator Cuff Matthias A. Zumstein, Nandoun Abeysekera, Pietro Pellegrino, Beat K. Moor, and Michael O. Schär	207
22	Kinematics of the Rotator Cuff Matthew T. Provencher, Stephen A. Parada, Daniel J. Gross, and Petar Golijanin	221
23	Imaging of the Normal Rotator Cuff	233
24	Rotator Cuff Pathology: A Comparison of Magnetic Resonance Imaging and Arthroscopic Findings Brian B. Gilmer and Dan Guttmann	239
25	Pathoanatomy of Rotator Cuff Tears Robert U. Hartzler, Richard L. Angelo, and Stephen S. Burkhart	253

26	Deltoid Muscle Yoshimasa Sakoma and Eiji Itoi	267
27	Periscapular Muscles	275
28	Kinematics of Scapular Motion	279
29	Anatomy of Scapula Winging William Ben Kibler and Aaron Sciascia	293
30	Pectoralis Major and Minor Muscles Alberto de Castro Pochini, Eduardo Antonio Figueiredo, Bernardo Barcellos Terra, Carina Cohen, Paulo Santoro Belangero Carlos Vicente Andreoli, Benno Ejnisman, and Levi Morse	301 ,
Par	t VI Nervovascular Structures	
31	Brachial Plexus	309
32	Axillary Nerve Ian J. Galley	315
33	Suprascapular Nerve	331
34	Vascularity of the shoulder Maritsa Konstantinos Papakonstantinou, Giovanni Di Giacomo, and Gregory I. Bain	345
35	Neurovascular Injuries with Shoulder Surgery	353
Par	t VII Surgical Anatomy	
36	Surface and Cutaneous Anatomy of the Shoulder	371
37	Anterior Surgical Approaches to the Shoulder Mark Ross, Kieran Hirpara, Miguel Pinedo and Vicente Gutierrez	381
38	Posterior Surgical Approaches to the Shoulder	393
Par	t VIII The Functional Shoulder	
39	The Functional Shoulder Gregory Ian Bain, Joideep Phadnis, and David H. Sonnabend	403
Ind	ex	415

Part I

Introduction

Comparative Anatomy of the Shoulder

W. Jaap Willems

1.1 Introduction

Over a period of 370 million years, there has been an evolution from fish, through amphibians, reptiles and birds, to tetrapods. Fish have fins, which are rays with webbed or membranous processes. The evolution of fins in fishes to limbs in tetrapods was a very elegant progression, which has enabled the skeletal elements to be used for support, locomotion, followed by suspension and ultimately the ability to throw projectiles. The limbs in tetrapods are muscular appendages with well-defined joints.

In tetrapods, the limb (*chiridium*) is composed of three well-defined regions: the *autopodium* (wrist and fingers), *zeugopodium* (ulna and radius) and the *stylopodium* (humerus).

The pectoral girdle is the brace that supports the limbs [1]. Both pectoral girdles fused in the midline on the ventral surface of the body through a medium of the interclavicle.

In this chapter, the evolution of this pectoral girdle is described, with emphasis on the various tetrapods. Secondly, a comparison of the different animals models that can be used to study pathologies of the shoulder is described.

Amsterdam, The Netherlands e-mail: w.j.willems@xs4all.nl

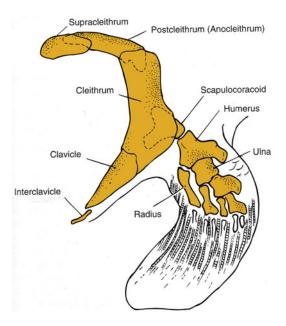
1.2 Phylogeny of the Shoulder Girdle: Osseous Architecture

In the evolution of the pectoral girdle in fishes, two essential changes occurred. The pectoral girdle both in fishes (rhipdistians) and tetrapods (vertebrate with four limbs) consisted of dermal and endoskeletal elements.

1.2.1 Fish

In fishes, the pectoral girdle is attached to the skull and during evolution the skull becomes completely detached from the skull in vertebrates. After this detachment, the pectoral girdle consists of a ventral *dermal* part (*cleithrum* and *clavicle*) and *endoskeletal* (*scapula* and *procoracoid*) components.

While this latter originally was one element, in tetrapods it arises from two distinct embryonic centres of enchondral ossification, leading to two distinct bones, the scapula and procoracoid (Fig. 1.1) [1].


1.2.2 Amphibians

In amphibians, with the acquirement of terrestrial habits, the tripartite type of pectoral girdle made its first appearance: the coracoid became segmented into the anterior procoracoid and posterior coracoid, while the clavicle formed a connection to the procoracoid [2].

G.I. Bain et al. (eds.), *Normal and Pathological Anatomy of the Shoulder*, DOI 10.1007/978-3-662-45719-1_1, © ISAKOS 2015

1

W.J. Willems, MD, PhD Shoulder Unit, De Lairesse Kliniek,

Fig. 1.1 Appendicular skeleton of the earliest tetrapods (rhipidistian, bony fish), where the earlier connection to the skull was lost leading to the formation of the pectoral girdle and an increase of the mobility of the head. The cleithrum and clavicula are located more ventrally, the scapulocoracoid more dorsally; the interclavicle connects both the clavicles (Reprinted with permission from: Kardong [1])

1.2.3 Reptiles

In reptiles, the pectoral girdle has migrated caudally from its intimate relation to the head, as seen in fish. The reptilian pectoral girdle comprised a scapula, a clavicle, which replaced the provoracoid, and a coracoid.

The evolution of the procoracoid varies by species. It becomes part of the anterior scapula around the glenoid fossa; in others, it is fused with the sternum, or is replaced by the clavicle. Although the scapula and coracoid process are anatomically united, genetic patterning of the coracoid and the scapula is under the control of different Hox genes, lending further support to the view that each is a separate phylogenetic derivative [2].

1.2.4 Birds

The avian pectoral girdle became specialized to enable flight. The clavicles became essential in suspending the limb away from the body and the coracoid became large and strong in response to the muscular demands of flight. Consequently, the scapula was small, curved and narrow to allow greater motion. The keeled attachment for the strong pectoral muscles used in flight. The sternum became keel shaped to provide attachment for the strong pectoral muscles used in flight.

1.2.5 Mammals

The coracoid in mammals tends to become greatly reduced, forming an insignificant process on the scapula. The only other vestige of the bone is the coracoid ligament, extending from the coracoid process to the bone, in which may be found isolated masses of cartilage. This arrangement frees the scapula from any bone attachment to the skeleton. In mammals without clavicles, the scapula has no bony attachments whatsoever. It becomes the sole support for limb and provides attachments for muscles necessary for a freely movable extremity. New functional demands on the girdle resulted in the development of a projection of bone on the dorsal surface of the scapula, the spine, which extends downwards and ends in the acromion [2].

The clavicle undergoes changes during evolution, when in tetrapods a change in limb posture arises. In a sprawled posture, the forces are medially directed toward the shoulder girdle, conferring on medial elements a major role in resisting these forces: In these animals the clavicles are interconnected, a so-called interclavicle. As the limbs are brought under the body, these forces are directed less toward the midline and more in vertical direction, leading to a less prominent role of the clavicles (Fig. 1.2) [1].

In mammals, which have acquired freedom of the forelimb to a marked degree, such as insectivores, primates and some marsupials and rodents, the clavicle is well developed. In others, including ungulates, carnivores and some rodents and marsupials, it is absent or rudimentary.

1.3 Phylogeny of the Shoulder Girdle: Musculature

Development of the shoulder and forelimb muscles in tetrapods comes from four sources: branchiomeric (jaw and pharyngeal muscles), axial, dorsal limb and ventral limb muscles (Fig. 1.3).