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Financial Markets – Data, Basics
and Derivatives

1.1 INTRODUCTION AND OBJECTIVES

The first chapter is to introduce the models that appear in subsequent chapters and, in so
doing, to highlight the necessity of applying advanced numerical techniques. Since we wish to
apply mathematical models to financial problems, we first have to analyse the markets under
consideration. We have to check the available data upon which we build our models. Then, we
have to investigate which models are appropriate and, finally, we need to decide on numerical
methods to solve the modelling problem.

We motivate using market data; we highlight the nature of risk and the problems which
arise with inappropriate modelling. The final conclusion is that the observed market structures
need sophisticated models, numerically challenging implementation and deeply involved spe-
cial purpose algorithms. Furthermore, we provide answers and suggestions to the following
questions:

• What kind of objects do we have to model?
• What kind of distributions are necessary? Do we need anything other than the Gaussian

distribution?
• What kind of patterns do we observe and which model is capable of reproducing such

patterns?
• How complex should a model be?
• Which mathematical methods do we need? PDE? SDE? Numerical Mathematics?

We do not rate the models, but we do give advice on the numerical methods which can be
applied to implement the different models and on what kind of market observation is covered
by a certain model. We work out several methods which can be applied. The reader can try
the different solutions and – very important – check the implementation, the stability and the
robustness. Furthermore, the code provided can be modified to fit the special modelling issues.

Since financial models have to be implemented as computer programs, or they have to be
integrated into a pricing library, numerical methods are required. The most fundamental risk
of a model is, of course, its inapplicability in a certain setting. To this end we have to analyse
which risk factors can be modelled using a certain class of models and we have to be aware
of the risk factors that have not been taken into account. But once we have decided to apply
a particular model, and we think that we are applying it appropriately, we face the following
challenges:

• Appropriate numerical techniques.
• Approximations used should be robust, efficient and accurate.
• Black box solutions should be avoided.
• The implementation should be stable and reliable.

9
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1.2 FINANCIAL TIME-SERIES, STATISTICAL PROPERTIES OF
MARKET DATA AND INVARIANTS

To use a mathematical model for gaining insights and applying it to financial market data we
need to choose some quantities or risk factors which we model. To this end we consider the
notion of a market invariant. Fix a starting point tstart in time and an estimation interval τ . The
interval τ could be one day or one month, for instance. Suppose from a market data provider
we can get the data for an index X (t), t ∈ T , with

T := {tstart, tstart + τ, . . . , tstart + n · τ } , n ∈ N.

We regard X(t) as a random variable. A random variable X is called a market invariant for tstart

and estimation interval τ if the realizations

• are independent
• are identically distributed.

A simple but effective method to test if a random variable qualifies as an invariant is the
following:

• Take a time series Xs , s = t, t + τ, . . . , t + n · · · τ = T of the possible invariant.
• Split the time series into two parts

X1
t = x1

t , t ∈ {tstart, . . . , [T − tstart/2τ ] · τ }
X2

t = x2
t , t ∈ {([T − tstart/2τ ] + 1) · τ, . . . , T }.

• Plot histograms corresponding to X1 and X2.
• Plot lagged time series X̃t := Xt−τ against Xt .

Let us illustrate this test on time series for index and swap data. Before we actually start let
us illustrate the dependence structure corresponding to independent, positively and negatively
dependent random variables. To this end we take as an example the normal distribution with
zero mean and a given covariance matrix, �. For our examples we choose three different
covariance matrices, namely,

�0 =
(

1 0

0 1

)
, �1 =

(
1 0.99

0.99 1

)
, �2 =

(
1 −0.99

−0.99 1

)
.

The dependence structure is displayed in Figure 1.1.
We call a market invariant X time homogeneous if the distribution of X does not depend on

the chosen time point tstart. In the sequel we consider Equity, Index, Interest Rate and Option
markets. First, we consider index time series for the S&P 500, the Nikkei, the FTSE and the
DAX. We argue that the prices of the indices do not obey the properties necessary to be an
invariant.

The first observation regarding the data is that if we plot the lagged time series directly we
get Figure 1.2. This clearly shows that the plain data are not independent and therefore not an
invariant.

Furthermore, when we plot histograms with respect to the observed data we cannot find a
suitable distributional description. Figure 1.3 shows the corresponding histograms.

Now, we consider the logarithmic returns computed from the time series. We see a very
different picture. Figures 1.4 and 1.5 suggest that these quantities are invariants.
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Figure 1.1 Time series generated from a normal distribution with covariance given by �0 (top left),
�1 (top right) and �2 (bottom) reflecting independence, positive and negative dependence

Thus, without further discussion we take as a suitable choice for a market invariant in the
equity market the logarithmic returns, given by

H (t, τ ) := log

(
S(t + τ )

S(t)

)
. (1.1)

In fact, let g : R → R be a function, then g(H) is a market invariant.
Taking realized prices of an index it is difficult to assign probabilistic concepts. It is not clear

how to obtain relevant statistical information using such prices. On the contrary, the logarithmic
returns introduced in Equation (1.1) show that the observed time series are independent and
some parametric probability distribution can be assigned.

Other market invariants can also be derived. For a general and formal treatment see Meucci,
A. (2007). We consider the case of the interest rate market. The zero coupon bonds, DF(t, T )
and the ratio DF(t,T )

DF(t−τ,T ) might be considered as invariants. But since they tend to 1, respectively
its redemption at expiry, zero coupon bonds are not time-homogeneous and therefore not
market invariants. For further illustration let us take non-overlapping total returns, Rv , with
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Figure 1.2 Lagged Time Series data of daily index closing prices for S&P 500 (top left), Nikkei (top
right), FTSE (bottom left) and DAX (bottom right) calculated from daily index closing prices

Figure 1.3 Histograms of daily index closing prices for S&P 500 (top left), Nikkei (top right), FTSE
(bottom left) and DAX (bottom right)
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Figure 1.4 Lagged time series for the logarithmic returns for S&P 500 (top left), Nikkei (top right),
FTSE (bottom left) and DAX (bottom right) calculated from time series of the daily closing prices

Figure 1.5 Histogram for logarithmic returns for S&P 500 (top left), Nikkei (top right), FTSE (bottom
left) and DAX (bottom right) calculated from time series for daily closing prices. Furthermore, the figure
shows a moment matched normal distribution
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Figure 1.6 Time Series for Changes in Yield to Maturity for 1Y swap rate (top left), 2Y swap rate (top
right), 10Y swap rate (bottom left) and 20y swap rate (bottom right)

maturity v. Thus,

Rv(t) = DF(t, t + v)

DF(t − τ, t − τ + v)
,

and therefore g(Rv(t)) are market invariants since they are time homogeneous, independent
and identically distributed. A convenient invariant is the change in yield to maturity (Y2m) and
the changes in Y2m denoted by Y:

Y2m(t, v) := −1

v
log (DF(t, t + v))

Y (t, v, τ ) := Y2m(t, v) − Y2m(t − τ, v).

As in the equity market we observe that the time series generated by the changes of the yield to
maturity shows the desired properties. The time series of the changes in the yield to maturity
derived from different quoted swap rates are plotted in Figure 1.6.

The corresponding historical distributions are plotted in Figure 1.7 and we again see that
the assignment of some parametric probability distribution can be achieved.

Another method is to measure the logarithmic returns generated by investing a certain
amount of currency using the current quoted rate for a pre-specified period.
Finally, let us consider the option market. For example, for a plain Vanilla Call option, the time
value depends on the price of the underlying, on the yield and on the volatility. Therefore, we
write the price of a European Call option, C, as

C(T − t, K , S(t), r (t), σ (t, S(t), K ATM(t)).



P1: TIX

JWBK546-c01 JWBK546-Kienitz August 22, 2012 8:2 Printer: Yet to come Trim: 244mm × 168mm

Financial Markets – Data, Basics and Derivatives 15

400

350

300

250

200

150

100

50

0
–2.5 –2 –1.5 –1 –0.5 0

Changes YTM Swap 1y
N

um
be

r 
of

 R
ea

liz
at

io
ns

Change YTM
0.5 1 2 2.5

x 10–3
1.5

400

350

300

250

200

150

100

50

0
–2.5 –2 –1.5 –1 –0.5 0

Changes YTM Swap 2y

N
um

be
r 

of
 R

ea
liz

at
io

ns

Change YTM
0.5 1 2 2.5

x 10–3
1.5

300

250

200

150

100

50

0
–5 –4 –3 –2 –1 0 1 2 3 4

Changes YTM Swap 20y

N
um

be
r 

of
 R

ea
liz

at
io

ns

Change YTM x 10–3

300

250

200

150

100

50

0
–5 –4 –3 –2 –1 0 1 2 3 4

Changes YTM Swap 10y

N
um

be
r 

of
 R

ea
liz

at
io

ns

Change YTM x 10–3

Figure 1.7 Histograms for Changes in Yield to Maturity for 1Y swap rate (top left), 2Y swap rate (top
right), 10Y swap rate (bottom left) and 20Y swap rate (bottom right)

For reasons of liquidity we only consider ATM forward volatility. This means that the strike
price is equal to the forward S(T). Since we have already identified the invariants for S(t) and
r(t) we are left with the problem of determining the invariants for σ . For time homogeneity
reasons we consider a fixed time period v and the corresponding maturity K(t)

σ (t, K (t), t + v).

The option price fluctuates if the underlying does, but this is not the case for volatility since

σ ≈
√

2π

v

C(T + v)

S(T )
.

If we take differences in rolling ATM forward volatility:

σ (t, K ATM(t), t + v) − σ (t − τ, K ATM(t − τ ), t − τ + v).

This choice fulfils the constraints on invariants.

1.2.1 Real World Distribution

Suppose we have identified a market invariant such as the logarithmic returns of an index. We
are now interested in the historical distribution of the invariant since this can be used as an
input to some financial model. This could, for instance, be an asset allocation algorithm.

Figure 1.8 illustrates the difference of the real world distribution of the German DAX index
from realized data. Furthermore, we determined the first and the second moment, which are
the expectation and the standard deviation. For comparison to the real world distribution we
used a moment matched Gaussian distribution. We see that this distribution is not capable of
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Figure 1.8 DAX index distribution of logarithmic returns and normal density with matched mean and
variance

matching the shape of the historical distribution. In what follows we show that calculating risk
figures using the Gaussian distribution or using it for asset allocation purposes causes some
severe problems.

Applying the Gaussian distribution does not lead to a reasonable description of the risks
involved in financial markets. Methods based on calculating risk rely on the computation of
quantiles of a cumulative distribution. The quantile function is the functional inverse of the
cumulative distribution. If P is the cumulative distribution taking values in [0, 1], we fix a
number α ∈ [0, 1] and determine the value of x for which P(x) = α. Then, x is referred to as
the α-quantile. Methods based on the computation of quantiles include Value-at-Risk (VaR),
Conditional-Value-at-Risk (CVaR), (1.2), or time series analysis for asset allocation.

We base our consideration on Shaw, W.T. (2011). We define CVaR which is also known as
expected shortfall. This risk figure can be related to VaR by

α − CVaR := α −
∫ α

−∞ F(x)dx

F(α)
≥ α − VaR. (1.2)

Let us briefly discuss the inadequacy of using the Gaussian distribution for modelling real
world distributions and applying it to identify risk. The real world or statistical distribution
is the distribution obtained by time series analysis. Recently, the credit crisis of 2008 showed
that the Gaussian assumption for modelling gave rise to many errors.

Often statements of the type “We have seen a sequence of 25 standard deviation events”
or “several 10 standard deviation events occurred several days in a row” could be heard in
interviews or appeared in the financial press. This illustrates the inadequacy of the Gaussian
hypothesis in financial modelling. Statistically, for a 25 standard deviation event to happen
it would need longer than the lifetime of the universe. But reality shows that extreme events
occur much more often than is suggested by models based on the Gaussian assumption. This
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Figure 1.9 Risk Measure VaR for the Student distribution with 3 degrees of freedom, 4 degrees of
freedom and the Gaussian distribution

makes us very aware that Non-Gaussian modelling is necessary and we therefore provide the
numerical tools to handle this modelling approach.

Figure 1.9 plots the VaR for different probability distributions, namely the Student dis-
tributions with 3 and 4 degrees of freedom as well as the normal distribution. We see the
very low values for the VaR with respect to the normal distribution. Choosing the Gaussian
distribution suggests that the tail risk is very small. Tail events, thus, cannot be neglected.
But by choosing another distribution, such as the Student distribution with a small degree of
freedom, we observe that the tail risk is significant.

Other risk measures have been suggested, for instance the expected shortfall (CVaR). Figure
1.10 illustrates that for the Gaussian distribution switching from VaR to CVaR has no effect.
Both risk measures lead to similar results. However, changing the distribution to a Non-
Gaussian distribution shows that switching from VaR to CVaR leads to different risk figures.

The Matlab functions StuCVaR, Stunorm and FMinusOne, illustrated in Figures 1.11 and
1.12, are used to compute the CVaR for the Student distribution. The code displayed in Figure
1.13 is used to compute the VaR.

Another method that may be used here is to identify the key drivers of risk by applying
principal component analysis, PCA. These key drivers are simulated in stress tests or in some
likely scenario. However, when applying PCA care has to be taken since there are several
pitfalls. We refer to West, G. (2005) for illustrations and an analysis of the risks involved in
PCA.

1.3 IMPLIED VOLATILITY SURFACES AND
VOLATILITY DYNAMICS

Time series are not the only source of information for modelling the financial market. There
are many liquid instruments for which prices are quoted on information systems or prices
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Figure 1.10 Risk Measures CVaR and VaR for the Student distribution with 3 degrees of freedom, 4
degrees of freedom and the Gaussian distribution. Only for the Student distributions do we see that the
risk figures are distinct

Figure 1.11 Matlab code for computing the CVaR for a general Student distribution. x ∈ [0, 1] and n
gives the degrees of freedom

Figure 1.12 Matlab code for computing the inverse distribution function for a general Student distri-
bution. x ∈ [0, 1] and n gives the degrees of freedom

Figure 1.13 Matlab code for computing the norm using a general Student distribution. u ∈ [0, 1] and
n gives the degrees of freedom
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Figure 1.14 Daily logarithmic returns for the DAX index based on time series data from 15.12.1993
until 15.08.2006

can be obtained from brokers. Such quotes are a valuable source of information. Quants
try to beg out model parameters from such quotes. This well-known practice is termed the
procedure of calibration. While we do not discuss the pros and cons of calibration in this book,
we do assess the process of calibration for determining some model parameters from given
market quotes for a particular model. We wish to find model parameters which most closely
match the observed prices. However, using this method completely ignores stability and other
modelling issues. For instance, the market quotes can be weighted to assign more weight to
liquid options and thus lead to a higher impact when determining the parameters. But the
reader may well ask if the calibration makes sense at all, since every day, or even in shorter
periods, model parameters change. Despite the criticism of calibration, this is market practice
and we do provide the numerical methods and tools to perform calibration. We emphasize
that calibrating models needs great care and that all aspects, such as parameter stability or
robustness, have to be taken into account.

In this section we consider implied volatility surfaces. Implied volatility is a convenient
way to quote option prices.

1.3.1 Is There More than just a Volatility?

Here we show that there is evidence that there are more notions and meanings to the word
volatility. The classical meaning of volatility is the one suggested by the Black–Scholes
formula.

We can also base the considerations on observed time series data. For example, let us
consider Figure 1.14. The figure shows the logarithmic returns of the DAX index based on a
time series of daily data from 15.12.1993 to 15.08.2006. We see that there are periods showing
very low activity but other regimes where the daily logarithmic returns change very fast. The
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Figure 1.15 DAX Implied Volatility Surfaces for 09.01.2008 (upper left), 10.09.2007 (upper right),
11.05.2007 (lower left) and 11.01.2007 (lower right)

returns also exhibit large absolute values. In fact, it seems that it is impossible to relate a
single positive number to the dynamic of the DAX. The dynamic seems to be at least time
dependent or even stochastic as in Figure 1.14. Some periods of small moves are followed
by small moves, and large moves are followed by large moves. This observation is called
volatility clustering.

If we consider the implied volatility observed at a given time point, we note that with
respect to strike and maturity the implied volatilities do change considerably. Figure 1.15
shows the implied volatility surface for the German DAX index at four different dates, namely
09.01.2008, 10.09.2007, 11.05.2007 and 11.01.2007. We see that not only the height of the
surface differs significantly. Comparing the given dates the shapes are also very different. One
can see that either a skew, high volatility for low strikes and low volatility for high strikes, or a
smile, high volatility for low and high strikes and low volatilities around the current forward,
which is the ATM strike, is possible.

This does not fit in terms of aggregating the risk into one single number. In fact, there are
many financial products that are very sensitive to changes in the shape of the volatility surface.
But, even worse, there are instruments that are sensitive to the movement of the implied
volatility surface. We consider such options when we introduce the numerical methods for
pricing.
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Figure 1.16 A typical shape of the implied volatility structure for DAX options. Plotted are implied
volatilities quoted for short-term and mid-term options. The shape suggests that the skew flattens out for
large times to maturity

The skew inherent in the implied volatility surface for equity or index options has many
causes. We have observed a flat implied volatility surface since the crash in October 1987. A
firm’s value of equity can be seen as the present value of all its future income plus its assets
minus its debt. Assets may have very different relative volatilities than debt, which can give rise
to a leverage related skew. Furthermore, supply and demand might be another reason for the
skew. Equivalently, downward risk insurance is more desired due to the intrinsic asymmetry
of positions in equity. Due to their financial rationale, it is more natural for equity or indices
to be held for a long period than for a short one. This makes protection against downward
moves more important. Finally, declining stock or index prices are more likely to give rise to
massive portfolio re-balancing. Therefore volatility rises if stock or index prices increase. This
asymmetry occurs naturally from the existence of thresholds below which positions must be
cut unconditionally for regulatory reasons.

The interest rate market smile is caused by the many different market activities of central
banks, pension funds or governments. Trading, speculation, hedging or simply investment
strategies cause supply and demand for protection against low as well as high interest rate
levels. A typical smile shape is the hockey stick.

Foreign exchange rates are quoted in terms of an exchange rate for one currency against
another. The smile is caused by anticipating government policies, trade policies and/or hedging
activity caused by firms and banks. Foreign investors seek protection against FX rates. Due to
the strength of one currency against another the smile can be asymmetric.

Two figures illustrate this phenomenon. First, Figure 1.16 once more illustrates that options
having different strikes and different times to maturity are priced using different volatilities.

There is an index that measures realized volatilities. This index is the VDAX. Figure 1.17
shows data from the VDAX time series.

Traditionally, smile models have been assessed according to how well they fit market option
prices across strikes and maturities. However, the pricing of most recent exotic structures,
such as reverse cliquets or Napoleons, is more dependent on the assumptions made for the
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Figure 1.17 Time series for the German Volatility Index VDAX from 21.01.1992 till 21.01.2009.
Indicated is the assumption of a time-dependent and even a stochastic volatility

future dynamics of implied volatilities than on today’s Vanilla Option prices. We have different
assumptions on the smile dynamics, for instance:

• Constant (Black–Scholes).
• Spot smile and spot term structure (Local-Volatility, Merton).
• Moving smile (height, smiling, skewness, . . .) (Stochastic Volatility).
• Floating smile property (Lévy).

After gathering information from financial markets we consider different notions for volatility
which later lead to financial models based on different stochastic processes. For the different
notions of volatility and their connection we refer the reader to Gatheral, J. (2006) and Lee,
R. (2002).

1.3.2 Implied Volatility

Let us assume that some financial asset S(t) is modelled by the SDE

d S(t) = r S(t)dt + σ S(t)dW (t).

The parameter σ is the implied volatility. Using σ it is possible to value European Calls
and Puts by the Black–Scholes formula. The price of a European Call option, respectively
European Put option, is linked by a one-to-one relation to the implied volatility. Thus, option
prices can be quoted by just one number regardless of the current spot price.

1.3.3 Time-Dependent Volatility

If we assume that volatility of the underlying price is a deterministic function of time, the
process can be defined by the SDE

d S(t) = r S(t)dt + σ (t)S(t)dW (t),
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with σ : R → R
+ being a positive real-valued function. We define the average volatility, σAv,

by

σAv :=
√

1

T

∫ T

0
σ 2(t)dt .

It is well known that log(S(t)) is normal with mean (r − σ 2
Av
2 )T and variance σAvT . A European

Call option can be priced using the average volatility. But hence the average volatility is given
as an integral expression, the function σ (·) cannot be derived from a finite set of European Call
option prices. Thus, to restrict the degrees of freedom in a time-dependent volatility model the
modeller can use a parametric form of the volatility function σ (·).

A further generalization is the time-dependent and spot-dependent volatility.

1.3.4 Stochastic Volatility

Further generalization of the concept of volatility leads to a consideration of stochastic volatil-
ity. In contrast to the other models volatility by itself is a stochastic process and driven by
another Brownian motion.

d S(t) = r S(t)dt + f (σ (t))dW (t)

dσ (t) = μ(σ, t)dt + α(σ, t)V (t)dW2(t)

〈dW1(t), dW2(t)〉 = ρdt.

As in the case of time-dependent volatility it is possible to define an average volatility depend-
ing on the realization ω:

σSAV (ω) =
√

1

T

∫ T

0
σ 2(ω, t)dt .

In contrast to the time-dependent volatility, the expected value of the average volatility is not
equal to the implied volatility. If C(T, K ) denotes the European Call option price, we have

dC(K , T ) = e−rT
E

[
−r K H (S(T ) − K ) + 1

2
σ 2(T )S2(T )δ(S(T ) − K )

]
dT,

with H and δ denoting the Heavyside function and the δ distribution.

1.3.5 Volatility from Jumps

There is yet another way for a process to move. Let us take a diffusion process to which we add
another stochastic process, which is called the jump part. This process does not continuously
contribute to the movement but instead there are rare events called jump times. In the case
of a jump, the jump height is drawn from some probability distribution. The corresponding
value is added to the current value. This procedure finally leads to the sample path.

Despite the fact that a process can consist of a diffusion and a jump part, another class
of processes has been researched. This class only move by jumps. Jumps are then no longer
rare events, but the jumps stochastically vary in size and small jumps contribute to the move-
ment. Pure jump processes, as such processes are called, become increasingly important for
modelling.
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1.3.6 Traders’ Rule of Thumb

There are some rules of thumb for modelling volatility. Three of these rules are called the
sticky-strike, sticky-moneyness and the sticky-delta rule. Some traders used to adhere strictly
to these rules. Therefore, we shall explain them briefly here.

Let us consider a given implied volatility surface V at time t0. For each time to maturity T ,
each strike K and level of the underlying S, the function V assigns a value called the implied
volatility. Mathematically, we can view V as a function

I V : R
+ × R

+ × R
+ → R

+

(K , T, S) 	→ V (K , T, S).

Often we do not consider the current value of the underlying and regard IV as a function
of maturity and strike only. Given IV , the sticky-strike rule postulates that for a given time
to maturity T the skew varies linearly. Let v(T) denote the slope of the skew that is v(t) :=
∂C
∂K

∣∣
K=S(0)

. For some function v1 : R
+ → R the value of the implied volatility is then given

I V (K , T ) = I V (S(t0), T ) + v1(t)(S(t0) − K ).

First of all, we observe that there is no level dependence of the implied volatility. However,
the formula is appealing for equity markets and not too far out of the money strikes. Since
we have no level dependence on the spot when modelling the skew we exactly recover the
standard Black–Scholes Delta for the options.

Let us now consider the quantity K/S and look at another parametrization of IV . The
quantity K/S is called moneyness; we will come across this concept and that of log-moneyness,
log(K/S) again later in the book. We wish to introduce some level dependence to V . The rule
we now consider is called the sticky-moneyness rule and is a little bit more involved. Given
IV , the sticky-moneyness rule postulates that if time passes from t0 to t0 + � and the asset
moves, the volatility of an option for a given strike K sticks to the moneyness. We therefore
look at another function v2 : R

+ → R and consider

I V (K , T ) = V (S(t0), T ) + v2(t)(1 − K/S(T ))S(t0).

The sticky-delta rule is now an approximation to the sticky–moneyness rule. For strikes not
too far away from the current spot level the volatility is approximated by

I V (K , T ) = V (S(t0), T ) + v2(t)(S(T ) − K ).

1.3.7 The Risk Neutral Density

The risk neutral density is closely linked to the notion of volatility since European Call or Put
options determine (in principle) the risk neutral density. For a European Call option we have

C(K , T ) = e−r (T −t)
E[max(S(T ) − K , 0)|S(t)]

= e−r (T −t)
∫ ∞

0
max(S(T ) − K , 0)q(S(T )|S(t))d S(T ),

with some probability density q. The probability density that prices all European Call options
is called the risk neutral density. With respect to this formula, Breeden, D. and Litzenberger,
R. (1978) show that q can be obtained from the continuum of all European Call option prices
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by differentiation

∂2C

∂K 2
= e−r (T −t)q(S(T )). (1.3)

We use variants of the risk neutral density. Often it is convenient to consider the risk neutral
density not with the forward but with the logarithmic moneyness. To this end, let p denote the
density and q the density of log(S(T )/S(0)), then, p and q are related by

p(x) = q(log(x/S(0))/x

q(x) = p(S(0) exp(x))S(0) exp(x).

In reality there are only quotes available for a discrete set K := {K1, . . . , KN }. Thus, further
assumptions on strike values K < K1 and K > KN as well as for strikes K which do not
belong to K but K1 < K < KN have to be made. This is directly linked to the issue of using
extrapolation and interpolation methods. Some standard interpolation techniques such as linear
interpolation are not sufficient for discovering the risk neutral density.

The interpolation method has to be arbitrage free. This means that using the interpolated
option prices should not lead to arbitrage possibilities as this would lead to unusable volatility
structures for the traders and for risk management.

However, having specified extrapolation and interpolation schemes and applying (1.3), one
may observe that risk neutral distributions are in general not symmetric and differ significantly
from the Gaussian distribution. We discuss several different distributions which we apply for
modelling in this book.

A cumulative distribution FX (x) := P(X ≤ x) is said to obey a fat tail of order α if

1 − FX (x) ∼ x−α as x → ∞.

This property is linked to the kurtosis of the distribution which we consider in the sequel. Let
μ be the mean of the distribution. If for the density function

f (μ − x) = f (μ + x)

holds, we say the distribution is symmetric. If this is not the case, the distribution is asymmetric
or skewed.

To this end, higher moments become important for analysing time series for financial
models. The moments encode properties of the distribution.

The Gaussian distribution, for instance, is completely determined by two parameters. Know-
ing the mean and the standard deviation or, equivalently, the variance is sufficient to determine
the probability distribution. Other distributions with a richer structure can therefore be more
realistically applied to financial data showing fat tails, asymmetry and other shapes. For such
distributions these features are related to the higher moments. Knowing only the first two
moments is not enough information in this case. Below we consider the first four moments
and their sampled counterparts, also called empirical moments.

The first moment, the expectation, is given by

μ = E[X ] (1.4)

μ̂ = 1

N

N∑
j=1

x j (1.5)
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and the second moment, the variance or its square root, the volatility

σ =
√

E[(X − μ)2] (1.6)

σ̂ = 1√
N

√√√√ N∑
j=1

(x j − μ̂)2. (1.7)

Financial time series in general show significant skewness

sk = E[(X − E[X ])3]

V[S]3
(1.8)

ŝk = 1

N

N∑
j=1

(x j − μ̂)3

σ̂ 3
(1.9)

and, finally, kurtosis

ku = E[(X − E[X ])4]

V[S]2
(1.10)

k̂u = 1

N

N∑
j=1

(x j − μ̂)4

σ̂ 4
(1.11)

and therefore are heavily tailed and peaked.
A symmetric distribution, for instance the normal distribution, has skewness 0. If a distri-

bution has fatter tails to the left (right) the skewness is negative (positive).
The normal distribution has kurtosis equal to 3. If the distribution is flatter (higher peaked)

than the normal distribution, it has kurtosis smaller (bigger) than 3.
We have reviewed the real world probability density and the risk neutral density. We

observed that symmetric, non-fat-tailed distributions often fail to model observed market
structures and therefore the risks. To this end we have to apply other distributions and other
stochastic processes for modelling apart from the Gaussian model. In the next section we
show some financial applications where we wish to apply the more general concepts. To that
efficient and robust techniques have to be considered. This is the main topic of the current
book.

1.4 APPLICATIONS

Finally, we address the applications we are considering in this book. We wish to use advanced
mathematical models for

• Asset Allocation.
• Pricing, Hedging and Risk Management.

Therefore, we discuss these topics in what follows.

1.4.1 Asset Allocation

Suppose a trading desk or a fund manager wishes to create a certain yield. To structure the
portfolio several financial assets can be used. Each asset may create a certain yield. But there
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are also risks, the volatilities, and, furthermore, it may become important how the different
assets and asset classes interact with each other. To this end we ask ourselves the question: Is
there a way to earn a certain yield and at the same time minimize the risk?

If it is possible to buy and sell securities, options and structured products of different types
we have to take into account the distribution of the risk factors. This distribution determines the
future value of the portfolio. To obtain the distribution we have to not only estimate parameters
describing the movement of a single risk factor but also, moreover, determine the dependencies
of the risk factors.

Now, suppose we know the probability distribution but we are faced with another problem:
the investment is restricted to certain portfolios. For instance, the fund manager is only allowed
to restructure 10% of the portfolio and it must contain 15% equity but not more than 25%.
Here we have to solve an optimization with constraints.

In the book we provide measures for the risk and tools to set up the problem as well as
applying the optimization.

1.4.2 Pricing, Hedging and Risk Management

Suppose we have a given portfolio consisting of financial products. The portfolio may, for
instance, include options, swaps, equities or structured products. This portfolio is exposed to
several risk factors. We consider market risk, credit risk and liquidity risk. Then, we have to
identify the key risk factors. A hedge is an immunization of the portfolio with respect to a
given risk factor. For instance, we consider a portfolio consisting only of a European Call
option. The standard risk factor which is considered is the spot price of an underlying asset.
Thus, a change of the spot price causes a move in the option value.

Let us now consider a hedge against small moves of the underlying. To this end a trader buys
or sells a certain amount of the underlying to account for this move. In general we consider
two methods for hedging a single option or even a whole trading book:

• Dynamic Hedging.
Dynamic hedging refers to a trading strategy we eventually apply to adjust a given portfolio
to reduce or even cancel out the risk. If we have identified risk factors, we are interested
in the sensitivity of the portfolio to a change in this factor. Having some pricing model at
hand we can calculate model sensitivities. These sensitivities are also called the Greeks. We
adjust the portfolio by buying or selling an amount of an instrument corresponding to the
risk factor. Thus, when risk factors move, the hedging portfolio has to be changed. Since
restructuring the hedge portfolio costs money, we have to decide when and how often we
have to re-balance it to reduce the risk.

• Static Hedging.
Another approach to hedging is the concept of static hedging. A static hedge is a portfolio
of financial instruments that approximately or even exactly replicates the payoff of some
exotic option or structured product. The static replication does not depend on a certain
model but on the structure of the derivatives contracts. But when it comes to pricing the
replicating portfolio a model dependence comes in. When we apply static hedging the
portfolio is only set up at the beginning and then never altered. Sometimes we decide to
hedge only a portion of the risk. The corresponding strategy is a sub-hedge. The opposite
of a sub-hedge is a super hedge.
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Let us briefly consider static hedging. To illustrate the concept we consider a function

f : I → R

S 	→ f (S)

such that f is monotonically increasing and for some number K0 we have f (K0) = 0. Then
we can find an approximate replication in terms of Call option payoffs by

f (S) ≈
N∑

i=1

ω(Ki )(S − Ki )
+.

The weights ωi , i = 1, . . . , N can be determined and they are given by

ω0 = f ′(K0); ω1 = f ′′(K1 − K0); . . . ; ωi = f ′′(Ki )(Ki+1 − Ki ),

which in the limit leads to a full replication

f (S) = f ′(K0)(S − K0)+ +
∫ ∞

K0

f ′′(K )(S − K )+d K .

If the function f is monotonically decreasing and f (K0) = 0 we have

f (S) ≈
N∑

i=1

ω̃i (Ki )(Ki − S)+,

with weights

ω̃0 = − f ′(K0); ω̃1 = − f ′′(K0 − K1); . . . ; ω̃N = − f ′′(KN )(KN−1 − KN ),

which than leads to a replication formula applicable for Put payoffs and we find for the limit

f (S) = − f ′(K0)(K0 − S)+ +
∫ K0

0
f ′′(K )(K − S)+d K .

We consider the approach for two different instruments and explain its application. First,
we remark that for f (S) := ((S − K )+)2 we have 2((S − K )+)2

∫ ∞
K (S − x)+dx and E[((S −

K )+)2] = 2
∫ ∞

K E[(S − x)+]dx .
Now, we are in a position to consider some well-known derivatives which can be statically

hedged.

• Constant Maturity Swaps.
We consider the set of time points Ta, Ta+1, . . . , Tb and the swap rate

Sa,b := P(t, Ta) − P(t, Tb)

Aa(t)
; Aa(t) :=

b∑
j=a+1

τ j P(t, Tj ).

The expectation of the swap rate with respect to the Ti forward measure is

E
Ti [Sa,b(Ta)] = Aa(0)

P(0, Ta + δ)
E

A

[
Sa,b(Ta)2 P(TA, Ta + δ)

Aa(Ta)

]
.

In the final equation the second factor can be approximated and differentiated with respect
to the swap rate and, then, replication is applied. This leads to the notion of convexity
adjustment for constant maturity swaps.
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• Variance Swaps.
We consider the payoff of a log contract∫ T

0
σ (t)dt = 2

∫ T

0

1

S(t)
d S(t) − 2 log

(
S(T )

S(0)

)

and using the fact that the quadratic variation is

〈 ∫ T
0 σ 2(t)dt

T

〉
= 2

T

〈
log

(
F

S(T )

)〉
we have

2

T

(∫ S(T )

0

〈(K − S(T ))+〉
K 2

d K +
∫ ∞

F

〈(S(T ) − K )+〉
K 2

d K

)

and therefore a method to statically hedge the Variance Swap.

In fact, we cheated when stating the replication formula for CMS. It is market standard to use
cash settled swaptions instead of physically delivered swaptions. To this end the replication
formula should involve a change of numeraire.

To this end let M and N be two different numeraires with associated measures QM and
QN . The numeraires represent the ones associated with cash settled and physically settled
swaptions. Furthermore, let fr denote the quotient M/N and Y (t) = f (S(t)) for some twice
differentiable function f . Now, let us consider another twice differentiable function g and we
are interested in the values of options with payoffs:

g(S(T ))(S(T ) − k)+ and g(S(T ))(k − S(T ))+.

Let C0 and P0 denote the corresponding values of the options. Then, if we set h(x) := f/g
and ω := ∂2/∂x2h fr

V0(Y (T )) = f ′ fr (K ) + C0(K ) − P0(K )

+
∫ K

0
ω(x)P0(x)dx +

∫ ∞

K
ω(x)C0(x)dx

provided that K ≥ 0 such that f (K ) = 0, g′(K ) �= 0.
We can now take for f and g the physically settled and the cash settled annuity. The above

formula, then, leads to the replication formula for CMS using cash settled swaptions.
Wittke, M. (2011) considers the convexity correction computed via a replication portfolio

for CMS. Let us consider the implementation in Matlab. We take, for instance, the SABR
model to determine the smile. First, we give the code for computing the weights.

The functionweights (Figure 1.18) uses the functionannuity, as illustrated in Figure 1.19.
The weights are multiplied by the payer, respectively receiver swaption prices of the repli-

cation portfolio. The corresponding swaptions are valued using a Black formula. The volatility
we use for pricing is determined by the SABR model. This model is used to incorporate the
observed swaption smile in the market. However, some of the shortcomings of the SABR
model and the rule of thumb formula are also considered below.

Now, having the weights and the swaption prices of the replication portfolio, we can
use the current forward as the strikes to determine the convexity adjustment. Using the above
algorithms, especially the code from Figure 1.20, we have evaluated our first static hedge using
Matlab. The above mentioned shortcomings of the SABR model lead to unstable convexity
adjustments so we need more advanced methods to robustly and effectively price CMS and
CMS options.
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Figure 1.18 Matlab implementation for the weights used for replicating CMS caplets and floorlets

1.5 GENERAL REMARKS ON NOTATION

Let us consider a stochastic process S(t) as well as the logarithm of S. The process X (t) :=
log(S(t)) is given by:

S(t) = S(0) exp(μ(t, S(t))t − ω(t) + σL (t, S(t))W (t)) (1.12)

X (t) = X (0) + (r − d)t − ω(t) + L(t) (1.13)

or equivalently in terms of the corresponding Stochastic Differential Equations:

d S(t) = μ(t, S(t))dt + σL (t, S(t))dW (t) (1.14)

d X (t) = μ̃(t, S(t))dt + σ̃L (t, S(t))dW (t). (1.15)

The process ω is called the martingale adjustment. We consider several methods for making
an exponential model into a martingale. For the examples we always stick to the subtraction
of the mean value to assure the martingale property.

For specific markets either prices or volatilities are quoted. To this end the modeller has to
account for the given quotes. For example, we may wish to set up a calibration procedure. If
the market quotes implied volatilities but not option prices, it would be reasonable to use an
approximation formula or a closed form solution for the quoted volatility instead of a pricing
formula. This is reasonable since the price has to be transformed into a volatility, which can be
very time consuming. The appendix of this chapter, Section 1.7, gives several market quotes
including swaption volatilities, CMS and CMS Spread options. Such quotes can be used for
calibration purposes or to verify prices. In general, the modeller has to decide which kinds of
market data to choose. There are several types of information available:

Figure 1.19 Calculating the annuity for determining the weights for CMS caplet and floorlet replication
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Figure 1.20 Code for implementing the replication method for CMS caplets and floorlets. The func-
tions payerSwaptionSABR and receiverSwaptionSABR are implemented by using the SABR
model

• Historical Data (time series).
• Quoted Option Prices.
• Liquid Options / Illiquid Options.
• Broker Prices for Exotics.

Often there is not a particularly good choice of quotes. Thus, the modeller has to rely on the
data that are available. For things which can go wrong by choosing raw market data the reader
is referred to Kienitz, J., Wetterau, D. and Wittke, M. (2011).

1.6 SUMMARY AND CONCLUSIONS

In this chapter we have reviewed market observable data from the financial markets. We
identified several notions of volatility and we observed that the Gaussian modelling assumption,
which is ubiquitous in modelling, is not adequate. Finally, we identified several applications
such as asset allocation, pricing and hedging where the application of sophisticated models is
needed. We argued that the following steps are crucial for correct modelling:

• Market Data.
• Model Choice.
• Calibration.
• Pricing.
• Hedging / Risk Management.

Assessing the market data and undertaking a statistical analysis on which the model choice is
based is crucial. To be able to use complex mathematical models with confidence, appropriate
numerical algorithms are necessary. We have written this book to cover such algorithms for
a wide range of models. We provide well-known and widely applied models that are capable
of modelling the market observable structures. The models can be efficiently and effectively
implemented. Our choice here is Matlab, for which we provide source code for all the examples
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discussed in this book. In this way it is possible to extend the classical applications to much
more complex models. We show the impact of parameters for each model and describe all the
numerical techniques in detail. Using the source code the reader can try out the models and
test if the implementation is efficient and stable enough for proprietary applications.

1.7 APPENDIX – QUOTES

Tables 1.1, 1.2, 1.3 and 1.4 give examples for market quotes for interest rate options, equity
options or foreign exchange options. Such market quotes can be applied to infer model
parameters, test models and numerical methods.

Table 1.1 Market quotes for the spread over 3M-Euribor for constant maturity swaps
(CMS). This spread reflects the convexity adjustment

Swap 2Y Index 5Y Index 10Y Index 20Y Index 30Y Index

5Y 51.7/57.7 100.7/109.7 147.9/157.9 154.6/174.6 139.1/164.1
10Y 45.5/51.5 81.6/90.6 117.0/127.0 107.2/127.2 97.8/122.8
15Y 40.5/46.5 66.2/75.2 91.1/101.1 82.6/102.6 79.2/104.2
20Y 35.6/41.6 56.7/65.7 71.1/91.1 79.8/99.8 77.7/107.7

Table 1.2 Market quotes for CMS spread options quoted as caps (Cap) or floors (Flr)

Flr Flr Flr Cap Cap Cap Cap Cap
FWD ATM −0.25 −0.10 0.00 0.25 0.50 0.75 1.00 1.50

1y 1.33 27.4 0.7 0.8 0.9 82.8 64.7 47.1 30.8 8.1
2y 1.28 82.1 5.0 5.8 6.4 188.1 147.4 108.5 73.0 24.1
3y 1.17 150.3 11.3 13.3 14.8 269.7 209.1 152.8 103.0 36.6
4y 1.05 228.6 21.6 25.3 28.3 333.9 256.3 185.8 125.5 46.9
5y 0.96 311.9 35.8 41.9 46.7 389.7 297.3 215.0 145.9 57.3
7y 0.83 490.1 74.9 86.7 95.9 497.3 378.7 275.4 190.6 82.5
10y 0.71 777.4 157.7 178.7 194.9 650.0 498.4 369.0 264.5 131.4
15y 0.50 1293.8 351.7 394.8 427.6 826.4 643.7 490.2 367.2 208.4
20y 0.39 1743.8 533.4 596.6 643.6 995.8 785.4 608.3 465.3 275.8

Table 1.3 Market quotes for implied volatility for the German DAX index. The implied volatilities are
quoted for different levels of moneyness K/S and maturity T . We use a model which is calibrated to
bid/ask prices of quoted option prices and then calculate an implied volatility surface for pricing

T/M 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50% 39.29% 36.44% 34.64% 33.52% 32.50% 31.93% 31.57% 31.35% 31.15% 31.05%
60% 37.37% 34.31% 32.68% 31.79% 30.99% 30.59% 30.37% 30.28% 30.17% 30.16%
70% 34.61% 31.90% 30.59% 30.01% 29.46% 29.26% 29.18% 29.21% 29.20% 29.28%
80% 31.13% 29.27% 28.42% 28.20% 27.94% 27.93% 28.00% 28.15% 28.25% 28.42%
90% 27.15% 26.50% 26.22% 26.41% 26.43% 26.62% 26.84% 27.11% 27.31% 27.56%
100% 22.97% 23.70% 24.03% 24.64% 24.97% 25.34% 25.70% 26.10% 26.39% 26.73%
110% 19.06% 20.97% 21.90% 22.94% 23.55% 24.10% 24.60% 25.12% 25.50% 25.91%
120% 17.00% 18.75% 19.98% 21.33% 22.19% 22.91% 23.54% 24.16% 24.63% 25.12%
130% 16.75% 17.50% 18.54% 19.97% 20.97% 21.79% 22.52% 23.25% 23.79% 24.35%
140% 16.75% 17.13% 17.68% 18.93% 19.94% 20.80% 21.60% 22.39% 22.99% 23.60%
150% 16.75% 17.12% 17.31% 18.23% 19.13% 19.97% 20.78% 21.61% 22.25% 22.90%
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Table 1.4 Market quotes of the swaption smile

Receivers Payers
−150 −100 −50 −25 ATM +25 +50 +100 +150

1m2y 41.42 15.27 5.20 2.23 47.94 −0.71 −0.91 −0.43 0.58
1m5y 32.22 17.48 7.54 3.52 40.64 −2.24 −3.84 −5.44 −5.60
1m10y 21.95 12.80 5.74 2.68 32.34 −1.82 −3.15 −4.45 −4.47
1m20y 22.24 13.68 6.48 3.11 30.90 −2.47 −4.57 −7.45 −8.52
1m30y 31.54 20.48 10.92 5.83 34.12 −3.19 −6.05 −10.4 −12.4
3m2y 39.58 15.43 5.74 2.51 48.12 −1.31 −2.17 −2.98 −3.06
3m5y 20.16 9.94 3.77 1.61 38.64 −0.77 −1.16 −1.15 −0.57
3m10y 16.66 9.35 3.91 1.77 30.21 −1.40 −2.44 −3.57 −3.75
3m20y 17.44 10.38 4.66 2.22 28.32 −1.95 −3.59 −5.83 −6.74
3m30y 20.12 12.17 5.51 2.50 30.90 −2.21 −4.12 −6.92 −8.32
6m2y 32.83 13.90 5.13 2.21 48.13 −1.50 −2.63 −4.05 −4.72
6m5y 21.18 11.10 4.43 1.97 37.33 −1.52 −2.65 −3.92 −4.28
6m10y 14.89 8.32 3.45 1.55 29.18 −1.21 −2.10 −3.04 −3.16
6m20y 14.65 8.60 3.80 1.80 27.23 −1.59 −2.91 −4.72 −5.51
6m30y 15.41 9.17 4.10 1.92 29.75 −1.64 −3.03 −5.07 −6.14
9m2y 28.13 12.23 4.53 1.98 47.18 −1.49 −2.64 −4.18 −5.03
9m5y 16.61 8.75 3.55 1.60 35.62 −1.29 −2.32 −3.71 −4.41
9m10y 13.31 7.45 3.11 1.41 28.58 −1.12 −1.98 −2.98 −3.26
9m20y 12.58 7.38 3.29 1.56 26.61 −1.36 −2.50 −4.17 −5.07
9m30y 13.49 7.94 3.53 1.66 28.67 −1.46 −2.71 −4.62 −5.74
1y2y 24.66 11.11 4.13 1.80 45.97 −1.46 −2.59 −4.12 −4.96
1y5y 14.98 7.97 3.25 1.47 34.41 −1.19 −2.14 −3.43 −4.11
1y10y 12.13 6.85 2.86 1.28 27.89 −1.05 −1.88 −2.94 −3.39
1y20y 11.92 6.96 3.03 1.40 26.05 −1.20 −2.19 −3.47 −4.07
1y30y 12.89 7.54 3.32 1.55 27.90 −1.35 −2.50 −4.22 −5.19
2y2y 14.15 7.16 2.80 1.24 37.32 −1.11 −1.99 −3.21 −3.84
2y5y 11.08 6.11 2.52 1.14 29.49 −0.94 −1.68 −2.71 −3.24
2y10y 9.23 5.27 2.24 1.02 25.35 −0.85 −1.54 −2.58 −3.30
2y20y 9.25 5.37 2.31 1.06 24.32 −0.90 −1.66 −2.75 −3.29
2y30y 10.24 5.94 2.63 1.23 25.74 −1.05 −1.92 −3.25 −4.00
5y2y 7.69 4.28 1.80 0.80 24.38 −0.61 −1.06 −1.52 −1.58
5y5y 7.33 4.14 1.74 0.79 21.97 −0.62 −1.09 −1.71 −1.91
5y10y 6.83 3.93 1.69 0.78 20.71 −0.64 −1.14 −1.77 −2.02
5y20y 8.04 4.57 1.91 0.86 20.90 −0.66 −1.16 −1.71 −1.79
5y30y 8.27 4.70 1.99 0.91 22.19 −0.78 −1.39 −2.13 −2.38
10y2y 4.99 2.89 1.28 0.58 18.15 −0.46 −0.82 −1.24 −1.36
10y5y 5.28 3.02 1.28 0.58 17.92 −0.47 −0.83 −1.28 −1.44
10y10y 6.54 3.71 1.52 0.65 18.81 −0.49 −0.87 −1.33 −1.46
10y20y 7.30 4.09 1.68 0.75 19.44 −0.58 −1.01 −1.50 −1.62
10y30y 7.70 4.31 1.78 0.80 19.65 −0.63 −1.10 −1.63 −1.75
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