

Giancoli Physik

Gymnasiale Oberstufe

Higher Education

München • Harlow • Amsterdam • Madrid • Boston San Francisco • Don Mills • Mexico City • Sydney a part of Pearson plc worldwide

Giancoli Physik

Inhaltsverzeichnis

Giancoli Physik
Inhaltsverzeichnis

Vorwort

Kapitel 1 Einführung, Messungen, Abschätzungen

- 1.1 Das Wesen der Wissenschaft
- 1.2 Modelle, Theorien und Gesetze
- 1.3 Messungen und Messfehler; signifikante Stellen
- 1.4 Einheiten, Standards und das Internationale Einheitensystem
- 1.5 Größenordnung: Schnelle Abschätzung
- 1.6 Einheiten und Einheitentest

Zusammenfassung

Verständnisfragen

Kapitel 2 Beschreibung von Bewegungen Kinematik in einer Raumrichtung

- 2.1 Bezugssystem und Weg
- 2.2 Mittlere oder Durchschnittsgeschwindigkeit
- 2.3 Momentangeschwindigkeit
- 2.4 Beschleunigung
- 2.5 Bewegung bei konstanter Beschleunigung
- 2.6 Problemlösungen
- 2.7 Der freie Fall

Zusammenfassung

Verständnisfragen

Kapitel 3 Kinematik in zwei Raumrichtungen; Vektoren

- 3.1 Vektoren und Skalare
- 3.2 Vektoraddition Grafische Methoden
- 3.3 Wurfbewegung

- 3.4 Lösung von Aufgaben mit Wurfbewegungen
- 3.5 Gleichförmige Kreisbewegung
- 3.6 Relativgeschwindigkeit

Zusammenfassung

Verständnisfragen

Kapitel 4 Dynamik: Die Newtonschen Axiome

- 4.1 Kraft
- 4.2 Das erste Newtonsche Axiom
- 4.3 Masse
- 4.4 Das zweite Newtonsche Axiom
- 4.5 Das dritte Newtonsche Axiom
- 4.6 Gewicht Die Gravitationskraft
- 4.7 Das Lösen von Aufgaben mit den Newtonschen Axiomen: Kräfteparallelogramme
- 4.8 Problemlösung Allgemeine Herangehensweise
- 4.9 Anwendungen der Newtonschen Axiome Reibung
- 4.10 Dynamik der gleichförmigen Kreisbewegung
- 4.11 Erhöhte und nicht erhöhte Straßenkurven

Zusammenfassung

Verständnisfragen

Kapitel 5 Gravitation und das Newtonsche Gravitationsgesetz

- 5.1 Das Newtonsche Gravitationsgesetz
- 5.2 Gravitation in der Nähe der Erdoberfläche Geophysikalische Anwendungen
- 5.3 Satelliten und Schwerelosigkeit
- 5.4 Die Keplerschen Gesetze und das Newtonsche Gravitationsgesetz
- 5.5 Fundamentale Wechselwirkungen
- 5.6 Schwere Masse Träge Masse Äquivalenzprinzip

Zusammenfassung

Verständnisfragen

Kapitel 6 Arbeit und Energie, Energieerhaltung

6.1 Durch eine konstante Kraft verrichtete Arbeit

- 6.2 Arbeit und kinetische Energie
- 6.3 Potentielle Energie
- 6.4 Mechanische Energie und ihre Erhaltung
- 6.5 Anwendungen des Energieerhaltungssatzes der Mechanik
- 6.6 Der Energieerhaltungssatz
- 6.7 Leistung

Zusammenfassung

Verständnisfragen

Kapitel 7 Impuls und Stöße

- 7.1 Impuls und seine Beziehung zur Kraft
- 7.2 Impulserhaltung
- 7.3 Stöße und Kraftstoß
- 7.4 Energieund Impulserhaltung bei Stößen
- 7.5 Elastische Stöße in einer Raumrichtung
- 7.6 Inelastische Stöße
- 7.7 Massenmittelpunkt

Zusammenfassung

Verständnisfragen

Kapitel 8 Drehbewegung um eine feste Achse

- 8.1 Winkelgrößen
- 8.2 Bewegungsgleichungen für gleichförmig beschleunigte Drehbewegungen
- 8.3 Rollbewegung (ohne Gleiten)
- 8.4 Vektorielle Beschaffenheit von Winkelgrößen
- 8.5 Drehmoment
- 8.6 Drehdynamik; Drehmoment und Trägheitsmoment
- 8.7 Drehimpuls und Drehimpulserhaltung
- 8.8 Kinetische Energie der Drehbewegung
- 8.9 Rotierende Bezugssysteme; Trägheitskräfte
- 8.10 Die Coriolis-Kraft

Zusammenfassung

Verständnisfragen

Kapitel 9 Schwingungen

- 9.1 Schwingungen einer Feder
- 9.2 Harmonische Schwingung
- 9.3 Energie in einem harmonischen Oszillator
- 9.4 Zusammenhang zwischen harmonischer Schwingung und gleichförmiger Kreisbewegung
- 9.5 Das Fadenpendel
- 9.6 Gedämpfte harmonische Schwingung
- 9.7 Erzwungene Schwingungen und Resonanz

Zusammenfassung

Verständnisfragen

Kapitel 10 Wellen und Wellenausbreitung

- 10.1 Eigenschaften von Wellen
- 10.2 Wellenarten
- 10.3 Energietransport in Wellen
- 10.4 Mathematische Beschreibung der Wellenausbreitung
- 10.5 Das Superpositionsprinzip
- 10.6 Reflexion und Transmission
- 10.7 Interferenz
- 10.8 Stehende Wellen; Resonanz
- 10.9 Klangqualität und Geräusche
- 10.10 Brechung
- 10.11 Beugung
- 10.12 Doppler-Effekt
- 10.13 Anwendungen: Sonar, Ultraschall und Ultraschall-Abbildung

Zusammenfassung

Verständnisfragen

Kapitel 11 Temperatur, Wärmeausdehnung und ideales Gasgesetz

- 11.1 Die Atomtheorie der Materie
- 11.2 Thermisches Gleichgewicht und der nullte Hauptsatz der

Wärmelehre

- 11.3 Die Gasgesetze und die absolute Temperatur
- 11.4 Das ideale Gasgesetz
- 11.5 Problemlösung mit dem idealen Gasgesetz
- 11.6 Ideales Gasgesetz und Avogadro-Konstante

Zusammenfassung

Verständnisfragen

Kapitel 12 Kinetische Gastheorie und der erste Hauptsatz

- 12.1 Das ideale Gasgesetz und die molekulare Interpretation der Temperatur
- 12.2 Molekulare Geschwindigkeitsverteilung
- 12.3 Mittlere freie Weglänge
- 12.4 Wärme und innere Energie
- 12.5 Der erste Hauptsatz der Thermodynamik
- 12.6 Anwendungen des ersten Hauptsatzes; Arbeitsberechnung
- 12.7 Wärmekapazität für Gase und die Gleichverteilung der Energie
- 12.8 Adiabatische Expansion eines Gases

Zusammenfassung

Verständnisfragen

Kapitel 13 Der zweite Hauptsatz

- 13.1 Der zweite Hauptsatz der Thermodynamik Einführung
- 13.2 Wärmekraftmaschinen
- 13.3 Reversible und irreversible Prozesse; der Carnot-Prozess
- 13.4 Kältemaschinen, Klimaanlagen und Wärmepumpen
- 13.5 Entropie
- 13.6 Entropie und der zweite Hauptsatz der Thermodynamik
- 13.7 Aus Ordnung wird Unordnung
- 13.8 Energieverfügbarkeit; Wärmetod
- 13.9 Statistische Interpretation der Entropie und des zweiten Hauptsatzes
- 13.10 Thermodynamische Temperaturskala; absoluter Nullpunkt und der dritte Hauptsatz der Thermodynamik

Zusammenfassung

Verständnisfragen

Kapitel 14 Elektrische Ladung und elektrisches Feld

- 14.1 Statische Elektrizität; elektrische Ladung und ihre Erhaltung
- 14.2 Elektrische Ladung im Atom
- 14.3 Isolatoren und metallische Leiter
- 14.4 Influenz; das Elektrometer
- 14.5 Das Coulombsche Gesetz
- 14.6 Das elektrische Feld
- 14.7 Feldlinien
- 14.8 Elektrische Felder und metallische Leiter
- 14.9 Bewegung einer Punktladung in einem elektrischen Feld
- 14.10 Das Gaußsche Gesetz
- 14.11 Das elektrische Potential
- 14.12 Beziehung zwischen elektrischem Potential und elektrischem Feld
- 14.13 Das elektrische Potential einer Punktladung
- 14.14 Äquipotentialflächen
- 14.15 Die elektrostatische potentielle Energie und das Elektronenvolt
- 14.16 Die Kathodenstrahlröhre: Fernseher, Computerbildschirm und Oszilloskop
- 14.17 Elektrische Dipole

Zusammenfassung

Verständnisfragen

Kapitel 15 Kapazität, Dielektrika und elektrische Energiespeicher

- 15.1 Kondensatoren
- 15.2 Bestimmung der Kapazität
- 15.3 Kondensatoren in Reihen- und Parallelschaltungen
- 15.4 Speicherung elektrischer Energie
- 15.5 Dielektrika
- 15.6 Molekulare Beschreibung von Dielektrika
- 15.7 Schaltkreise mit Widerstand und Kondensator (RC-Schaltkreise)

Zusammenfassung

Verständnisfragen

Kapitel 16 Magnetismus

- 16.1 Magnete und Magnetfelder
- 16.2 Elektrische Ströme erzeugen Magnetfelder
- 16.3 Die Kraft auf einen elektrischen Strom im Magnetfeld; Definition von B
- 16.4 Die Kraft auf eine bewegte elektrische Ladung in einem Magnetfeld: die Lorentz-Kraft
- 16.5 Das auf eine Leiterschleife wirkende Drehmoment
- 16.6 Anwendungen: Elektromotoren und Lautsprecher
- 16.7 Das Elektron: Entdeckung und Eigenschaften
- 16.8 Der Hall-Effekt
- 16.9 Massenspektrometer

Zusammenfassung

Verständnisfragen

Kapitel 17 Erzeugung von Magnetfeldern

- 17.1 Das Magnetfeld eines geraden Leiters
- 17.2 Die Kraft zwischen zwei parallelen Drähten
- 17.3 Das Ampèresche Gesetz
- 17.4 Das Magnetfeld einer Spule und eines Toroids
- 17.5 Magnetische Materialien Ferromagnetismus
- 17.6 Elektromagnete und Spulen
- 17.7 Magnetfelder in magnetischen Materialien; Hysterese
- 17.8 Paramagnetismus und Diamagnetismus

Zusammenfassung

Verständnisfragen

Kapitel 18 Elektromagnetische Induktion und das Faradaysche Gesetz

- 18.1 Die Induktionsspannung
- 18.2 Das Faradaysche Induktionsgesetz und die Lenzsche Regel
- 18.3 Induktion einer Spannung in einem bewegten Leiter
- 18.4 Elektrische Generatoren

- 18.5 Gegenspannung und Gegendrehmoment; Wirbelströme
- 18.6 Transformatoren und Stromübertragung
- 18.7 Ein sich ändernder magnetischer Fluss erzeugt ein elektrisches Feld
- 18.8 Anwendungen des Induktionsgesetzes: Tonsysteme, Datenspeicher und Seismografen

Zusammenfassung

Verständnisfragen

Kapitel 19 Induktivität und elektromagnetische Schwingungen

- 19.1 Gegeninduktivität
- 19.2 Selbstinduktivität
- 19.3 Energiespeicherung im Magnetfeld
- 19.4 Ein- und Ausschaltvorgang einer Spule
- 19.5 Elektrischer Schwingkreis
- 19.6 Gedämpfter elektrischer Schwingkreis
- 19.7 Ungedämpfte Schwingung, Rückkopplung

Zusammenfassung

Verständnisfragen

Kapitel 20 Wechselstromkreise

- 20.1 Einleitung: Wechselstromkreise
- 20.2 Widerstand im Wechselstromkreis
- 20.3 Induktionsspule im Wechselstromkreis
- 20.4 Kondensator im Wechselstromkreis
- 20.5 LRC-Wechselstromkreise in Reihenschaltung
- 20.6 Resonanz im Wechselstromkreis
- 20.7 Drehstrom

Zusammenfassung

Verständnisfragen

Kapitel 21 Die Maxwellschen Gleichungen und elektromagnetische Wellen

21.1 Ein sich änderndes elektrisches Feld erzeugt ein Magnetfeld eine allgemeine Form für das Ampèresche Gesetz

- 21.2 Das Gaußsche Gesetz für den Magnetismus
- 21.3 Die Maxwellschen Gleichungen
- 21.4 Erzeugung elektromagnetischer Wellen
- 21.5 Licht als elektromagnetische Welle und das elektromagnetische Spektrum
- 21.6 Radio und Fernsehen

Zusammenfassung

Verständnisfragen

Kapitel 22 Die Wellennatur des Lichts; Interferenz

- 22.1 Lichtgeschwindigkeit und Brechungsindex
- 22.2 Huygens-Prinzip und Beugung
- 22.3 Sichtbares Spektrum und Dispersion
- 22.4 Huygens-Prinzip und Brechungsgesetz
- 22.5 Interferenz Das Youngsche Doppelspaltexperiment
- 22.6 Kohärenz
- 22.7 Die Intensität im Interferenzmuster des Doppelspalts
- 22.8 Interferenz in dünnen Schichten
- 22.9 Das Michelson-Interferometer

Zusammenfassung

Verständnisfragen

Kapitel 23 Beugung und Polarisation

- 23.1 Beugung am Einfachspalt
- 23.2 Intensität im Beugungsmuster des Einfachspalts
- 23.3 Beugung am Doppelspalt
- 23.4 Beschränkung der Auflösung; kreisförmige Öffnungen
- 23.5 Auflösung von Teleskopen und Mikroskopen
- 23.6 Auflösungsvermögen des menschlichen Auges und sinnvolle Vergrößerung
- 23.7 Beugungsgitter
- 23.8 Spektrometer und Spektroskopie
- 23.9 Linienbreite und Auflösungsvermögen eines Beugungsgitters
- 23.10 Röntgenstrahlen und Röntgenbeugung

<u>Inhaltsverzeichnis</u>

23.11 Polarisation
23.12 Die Streuung des Lichts an der Atmosphäre
Zusammenfassung
Verständnisfragen
Kapitel 24 Spezielle Relativitätstheorie
24.1 Galilei-Newtonsches Relativitätsprinzip
24.2 Das Michelson-Morley-Experiment
24.3 Die Postulate der speziellen Relativitätstheorie
24.4 Gleichzeitigkeit
24.5 Zeitdilatation und das Zwillingsparadoxon
24.6 Längenkontraktion
24.7 Die vierdimensionale Raumzeit
24.8 Relativistischer Impuls und relativistische Masse
24.9 Grenzgeschwindigkeit
24.10 Energie und Masse; E = mc2
24.11 Doppler-Verschiebung des Lichts
24.12 Die Auswirkungen der speziellen Relativitätstheorie
Zusammenfassung
Verständnisfragen
Kapitel 25 Frühe Quantentheorie und Atommodelle
25.1 Die Plancksche Quantenhypothese
25.2 Photonentheorie des Lichts und der fotoelektrische Effekt
25.3 Photonen und der Compton-Effekt
25.4 Photonenwechselwirkungen; Paarerzeugung
25.5 Welle-Teilchen-Dualismus; das Komplementaritätsprinzip
25.6 Die Wellennatur der Materie
25.7 Elektronenmikroskope
25.8 Frühe Atommodelle
25.9 Atomspektren: Schlüssel zur Struktur des Atoms
25.10 Das Bohrsche Atommodell
25.11 Die Anwendung der De-Broglieschen Hypothese auf Atome

Zusammenfassung

Verständnisfragen

Kapitel 26 Quantenmechanik

- 26.1 Die Quantenmechanik: Eine neue Theorie
- 26.2 Die Wellenfunktion und ihre Interpretation; das Doppelspaltexperiment
- 26.3 Die Heisenbergsche Unschärferelation
- 26.4 Philosophische Konsequenzen; Wahrscheinlichkeit und Determinismus
- 26.5 Die Schrödinger-Gleichung in einer Dimension
- 26.6 Freie Teilchen; Ebene Wellen und Wellenpakete
- 26.7 Teilchen in einem unendlich tiefen Potentialtopf
- 26.8 Endlicher Potentialtopf
- 26.9 Tunneln durch eine Potentialbarriere

Zusammenfassung

Verständnisfragen

Kapitel 27 Quantenmechanik von Atomen

- 27.1 Quantenmechanische Sicht auf Atome
- 27.2 Das Wasserstoffatom: Schrödinger-Gleichung und Quantenzahlen
- 27.3 Die Wellenfunktionen des Wasserstoffatoms
- 27.4 Komplexe Atome, das Pauli-Prinzip
- 27.5 Das Periodensystem der Elemente
- 27.6 Röntgenspektren und Ordnungszahl
- 27.7 Fluoreszenz und Phosphoreszenz
- 27.8 Laser

Zusammenfassung

Verständnisfragen

Kapitel 28 Kernphysik und Radioaktivität

- 28.1 Struktur und Eigenschaften des Atomkerns
- 28.2 Bindungsenergie und Kernkräfte
- 28.3 Radioaktivität
- 28.4 Alphazerfall
- 28.5 Betazerfall

- 28.6 Gammazerfall
- 28.7 Erhaltung der Nukleonenzahl und weitere Erhaltungssätze
- 28.8 Halbwertszeit und Zerfallsrate
- 28.9 Zerfallsreihen
- 28.10 Die Radiokarbonmethode
- 28.11 Strahlungsmessung

Zusammenfassung

Verständnisfragen

Kapitel 29 Kernenergie; Auswirkungen und Anwendungsmöglichkeiten der Strahlung

- 29.1 Kernreaktionen und Transmutation von Elementen
- 29.2 Kernspaltung; Kernreaktoren
- 29.3 Fusion
- 29.4 Durchgang der Strahlung durch Materie; Strahlungsschäden
- 29.5 Strahlungsmessung Dosimetrie
- 29.6 Strahlentherapie
- 29.7 Indikatoren
- 29.8 Bildgebung durch Tomografie: Computertomografie (CT) und Positronen-Emissions-Tomografie (PET)

Zusammenfassung

Verständnisfragen

Anhang

- A Mathematische Formeln
- B Ableitungen und Integrale
- C Ausgewählte Isotope
- D Physikalische Größen: Verwendete Symbole und ihre Einheiten

E Index

Bildnachweis

Ins Internet: Weitere Infos zum Buch, Downloads, etc.

Copyright

Copyright

Daten, Texte, Design und Grafiken dieses eBooks, sowie die eventuell angebotenen eBook-Zusatzdaten sind urheberrechtlich geschützt. Dieses eBook stellen wir lediglich als **persönliche Einzelplatz-Lizenz** zur Verfügung!

Jede andere Verwendung dieses eBooks oder zugehöriger Materialien und Informationen, einschließlich

- der Reproduktion,
- · der Weitergabe,
- des Weitervertriebs,
- der Platzierung im Internet, in Intranets, in Extranets,
- der Veränderung,
- des Weiterverkaufs und
- der Veröffentlichung

bedarf der **schriftlichen Genehmigung** des Verlags. Insbesondere ist die Entfernung oder Änderung des vom Verlag vergebenen Passwort- und DRM-Schutzes ausdrücklich untersagt!

Bei Fragen zu diesem Thema wenden Sie sich bitte an: info@pearson.de

Zusatzdaten

Möglicherweise liegt dem gedruckten Buch eine CD-ROM mit Zusatzdaten oder ein Zugangscode zu einer eLearning Plattform bei. Die Zurverfügungstellung dieser Daten auf unseren Websites ist eine freiwillige Leistung des Verlags. **Der Rechtsweg ist ausgeschlossen**. Zugangscodes können Sie darüberhinaus auf unserer Website käuflich erwerben.

Hinweis

Dieses und viele weitere eBooks können Sie rund um die Uhr und legal auf unserer Website herunterladen:

https://www.pearson-studium.de

