Tewari / Belobaba / Cooper | Advanced Control of Aircraft | Buch | 978-0-470-74563-2 | sack.de

Buch, Englisch, 454 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 962 g

Reihe: Aerospace Series (PEP)

Tewari / Belobaba / Cooper

Advanced Control of Aircraft

Buch, Englisch, 454 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 962 g

Reihe: Aerospace Series (PEP)

ISBN: 978-0-470-74563-2
Verlag: WILEY


Advanced Control of Aircraft, Spacecraft and Rockets introduces the reader to the concepts of modern control theory applied to the design and analysis of general flight control systems in a concise and mathematically rigorous style. It presents a comprehensive treatment of both atmospheric and space flight control systems including aircraft, rockets (missiles and launch vehicles), entry vehicles and spacecraft (both orbital and attitude control). The broad coverage of topics emphasizes the synergies among the various flight control systems and attempts to show their evolution from the same set of physical principles as well as their design and analysis by similar mathematical tools. In addition, this book presents state-of-art control system design methods - including multivariable, optimal, robust, digital and nonlinear strategies - as applied to modern flight control systems.

Advanced Control of Aircraft, Spacecraft and Rockets features worked examples and problems at the end of each chapter as well as a number of MATLAB / Simulink examples housed on an accompanying website at http://home.iitk.ac.in/~ashtew that are realistic and representative of the state-of-the-art in flight control.
Tewari / Belobaba / Cooper Advanced Control of Aircraft jetzt bestellen!

Weitere Infos & Material


Series Preface xiii

Preface xv

1 Introduction 1

1.1 Notation and Basic Definitions 1

1.2 Control Systems 3

1.2.1 Linear Tracking Systems 7

1.2.2 Linear Time-Invariant Tracking Systems 9

1.3 Guidance and Control of Flight Vehicles 10

1.4 Special Tracking Laws 13

1.4.1 Proportional Navigation Guidance 13

1.4.2 Cross-Product Steering 16

1.4.3 Proportional-Integral-Derivative Control 19

1.5 Digital Tracking System 24

1.6 Summary 25

Exercises 26

References 28

2 Optimal Control Techniques 29

2.1 Introduction 29

2.2 Multi-variable Optimization 31

2.3 Constrained Minimization 33

2.3.1 Equality Constraints 34

2.3.2 Inequality Constraints 38

2.4 Optimal Control of Dynamic Systems 41

2.4.1 Optimality Conditions 43

2.5 The Hamiltonian and the Minimum Principle 44

2.5.1 Hamilton-Jacobi-Bellman Equation 45

2.5.2 Linear Time-Varying System with Quadratic Performance Index 47

2.6 Optimal Control with End-Point State Equality Constraints 48

2.6.1 Euler-Lagrange Equations 50

2.6.2 Special Cases 50

2.7 Numerical Solution of Two-Point Boundary Value Problems 52

2.7.1 Shooting Method 54

2.7.2 Collocation Method 57

2.8 Optimal Terminal Control with Interior Time Constraints 61

2.8.1 Optimal Singular Control 62

2.9 Tracking Control 63

2.9.1 Neighboring Extremal Method and Linear Quadratic Control 64

2.10 Stochastic Processes 69

2.10.1 Stationary Random Processes 75

2.10.2 Filtering of Random Noise 77

2.11 Kalman Filter 77

2.12 Robust Linear Time-Invariant Control 81

2.12.1 LQG/LTR Method 82

2.12.2 H2/H?E?E Design Methods 89

2.13 Summary 96

Exercises 98

References 101

3 Optimal Navigation and Control of Aircraft 103

3.1 Aircraft Navigation Plant 104

3.1.1 Wind Speed and Direction 110

3.1.2 Navigational Subsystems 112

3.2 Optimal Aircraft Navigation 115

3.2.1 Optimal Navigation Formulation 116

3.2.2 Extremal Solution of the Boundary-Value Problem: Long-Range Flight Example 119

3.2.3 Great Circle Navigation 121

3.3 Aircraft Attitude Dynamics 128

3.3.1 Translational and Rotational Kinetics 132

3.3.2 Attitude Relative to the Velocity Vector 135

3.4 Aerodynamic Forces and Moments 136

3.5 Longitudinal Dynamics 139

3.5.1 Longitudinal Dynamics Plant 142

3.6 Optimal Multi-variable Longitudinal Control 145

3.7 Multi-input Optimal Longitudinal Control 147

3.8 Optimal Airspeed Control 148

3.8.1 LQG/LTR Design Example 149

3.8.2 H?E?E Design Example 160

3.8.3 Altitude and Mach Control 166

3.9 Lateral-Directional Control Systems 173

3.9.1 Lateral-Directional Plant 173

3.9.2 Optimal Roll Control 177

3.9.3 Multi-variable Lateral-Directional Control: Heading-Hold Autopilot 180

3.10 Optimal Control of Inertia-Coupled Aircraft Rotation 183

3.11 Summary 189

Exercises 192

References 194

4 Optimal Guidance of Rockets 195

4.1 Introduction 195

4.2 Optimal Terminal Guidance of Interceptors 195

4.3 Non-planar Optimal Tracking System for Interceptors: 3DPN 199

4.4 Flight in a Vertical Plane 208

4.5 Optimal Terminal Guidance 211

4.6 Vertical Launch of a Rocket (Goddard's Problem) 216

4.7 Gravity-Turn Trajectory of Launch Vehicles 219

4.7.1 Launch to Circular Orbit: Modulated Acceleration 220

4.7.2 Launch to Circular Orbit: Constant Acceleration 227

4.8 Launch of Ballistic Missiles 228

4.8.1 Gravity-Turn with Modulated Forward Acceleration 232

4.8.2 Modulated Forward and Normal Acceleration 233

4.9 Planar Tracking Guidance System 237

4.9.1 Stability, Controllability, and Observability 241

4.9.2 Nominal Plant for Tracking Gravity-Turn Trajectory 243

4.10 Robust and Adaptive Guidance 247

4.11 Guidance with State Feedback 250

4.11.1 Guidance with Normal Acceleration Input 250

4.12 Observer-Based Guidance of Gravity-Turn Launch Vehicle 254

4.12.1 Altitude-Based Observer with Normal Acceleration Input 255

4.12.2 Bi-output Observer with Normal Acceleration Input 260

4.13 Mass and Atmospheric Drag Modeling 266

4.14 Summary 274

Exercises 275

References 275

5 Attitude Control of Rockets 277

5.1 Introduction 277

5.2 Attitude Control Plant 277

5.3 Closed-Loop Attitude Control 281

5.4 Roll Control System 281

5.5 Pitch Control of Rockets 282

5.5.1 Pitch Program 282

5.5.2 Pitch Guidance and Control System 283

5.5.3 Adaptive Pitch Control System 288

5.6 Yaw Control of Rockets 294

5.7 Summary 295

Exercises 295

Reference 296

6 Spacecraft Guidance Systems 297

6.1 Introduction 297

6.2 Orbital Mechanics 297

6.2.1 Orbit Equation 298

6.2.2 Perifocal and Celestial Frames 299

6.2.3 Time Equation 301

6.2.4 Lagrange's Coefficients 304

6.3 Spacecraft Terminal Guidance 305

6.3.1 Minimum Energy Orbital Transfer 307

6.3.2 Lambert's Theorem 311

6.3.3 Lambert's Problem 313

6.3.4 Lambert Guidance of Rockets 322

6.3.5 Optimal Terminal Guidance of Re-entry Vehicles 327

6.4 General Orbital Plant for Tracking Guidance 334

6.5 Planar Orbital Regulation 339

6.6 Optimal Non-planar Orbital Regulation 345

6.7 Summary 352

Exercises 352

References 355

7 Optimal Spacecraft Attitude Control 357

7.1 Introduction 357

7.2 Terminal Control of Spacecraft Attitude 357

7.2.1 Optimal Single-Axis Rotation of Spacecraft 358

7.3 Multi-axis Rotational Maneuvers of Spacecraft 364

7.4 Spacecraft Control Torques 375

7.4.1 Rocket Thrusters 375

7.4.2 Reaction Wheels, Momentum Wheels and Control Moment Gyros 377

7.4.3 Magnetic Field Torque 378

7.5 Satellite Dynamics Plant for Tracking Control 379

7.6 Environmental Torques 380

7.6.1 Gravity-Gradient Torque 382

7.7 Multi-variable Tracking Control of Spacecraft Attitude 383

7.7.1 Active Attitude Control of Spacecraft by Reaction Wheels 385

7.8 Summary 389

Exercises 389

References 390

Appendix A: Linear Systems 391

A.1 Definition 391

A.2 Linearization 392

A.3 Solution to Linear State Equations 392

A.3.1 Homogeneous Solution 393

A.3.2 General Solution 393

A.4 Linear Time-Invariant System 394

A.5 Linear Time-Invariant Stability Criteria 395

A.6 Controllability of Linear Time-Invariant Systems 395

A.7 Observability of Linear Time-Invariant Systems 395

A.8 Transfer Matrix 396

A.9 Singular Value Decomposition 396

A.10 Linear Time-Invariant Control Design 397

A.10.1 Regulator Design by Eigenstructure Assignment 397

A.10.2 Regulator Design by Linear Optimal Control 398

A.10.3 Linear Observers and Output Feedback Compensators 398

References 400

Appendix B: Stability 401

B.1 Preliminaries 401

B.2 Stability in the Sense of Lagrange 402

B.3 Stability in the Sense of Lyapunov 404

B.3.1 Asymptotic Stability 406

B.3.2 Global Asymptotic Stability 406

B.3.3 Lyapunov's Theorem 407

B.3.4 Krasovski's Theorem 408

B.3.5 Lyapunov Stability of Linear Systems 408

References 408

Appendix C: Control of Underactuated Flight Systems 409

C.1 Adaptive Rocket Guidance with Forward Acceleration Input 409

C.2 Thrust Saturation and Rate Limits (Increased Underactuation) 415

C.3 Single- and Bi-output Observers with Forward Acceleration Input 417

References 432

Index 433


Ashish Tewari is a Professor in the Department of Aerospace Engineering at the IIT-Kanpur. He specializes in flight mechanics and control, and his research areas include attitude dynamics and control, re-entry flight dynamics and control, non-linear optimal control and active control of flexible flight and structures. He has authored 2 books Atmospheric and Space Flight Dynamics and Modern Control Design with MATLAB and SIMULINK, and over 40 refereed journal and conference papers.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.