Vasisht / Sobel | Microencapsulation in the Food Industry | E-Book | sack.de
E-Book

E-Book, Englisch, 590 Seiten

Vasisht / Sobel Microencapsulation in the Food Industry

A Practical Implementation Guide

E-Book, Englisch, 590 Seiten

ISBN: 978-0-12-404735-8
Verlag: Elsevier Reference Monographs
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Microencapsulation is being used to deliver everything from improved nutrition to unique consumer sensory experiences. It's rapidly becoming one of the most important opportunities for expanding brand potential. Microencapsulation in the Food Industry: A Practical Implementation Guide is written for those who see the potential benefit of using microencapsulation but need practical insight into using the technology. With coverage of the process technologies, materials, testing, regulatory and even economic insights, this book presents the key considerations for putting microencapsulation to work. Application examples as well as online access to published and issued patents provide information on freedom to operate, building an intellectual property portfolio, and leveraging ability into potential in licensing patents to create produce pipeline. This book bridges the gap between fundamental research and application by combining the knowledge of new and novel processing techniques, materials and selection, regulatory concerns, testing and evaluation of materials, and application-specific uses of microencapsulation.
Practical applications based on the authors' more than 50 years combined industry experienceFocuses on application, rather than theoryIncludes the latest in processes and methodologiesProvides multiple 'starting point' options to jump-start encapsulation use
Vasisht / Sobel Microencapsulation in the Food Industry jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Microencapsulation in the Food Industry;4
3;Copyright Page;5
4;Contents;6
5;Foreword;14
6;Preface;16
7;About the Editors;18
8;List of Contributors;20
9;I: Introduction;22
9.1;1 Introduction to Microencapsulation and Controlled Delivery in Foods;24
9.1.1;1.1 Introduction;24
9.1.2;1.2 Microencapsulation defined;24
9.1.3;1.3 Reasons for microencapsulation;25
9.1.4;1.4 Types of microcapsules;26
9.1.5;1.5 Historical account of microencapsulation;26
9.1.6;1.6 Materials used for microencapsulation purposes;29
9.1.7;1.7 Microencapsulation techniques used within the food industry;30
9.1.8;1.8 Trends in microencapsulation;30
9.1.9;1.9 Challenges in microencapsulation of food ingredients;31
9.1.10;1.10 The future of microencapsulation of food ingredients;32
9.1.11;References;32
10;II: Concept of Microencapsulation;34
10.1;2 Factors and Mechanisms in Microencapsulation;36
10.1.1;2.1 Introduction;36
10.1.2;2.2 Structural design of the microcapsule;36
10.1.3;2.3 Microcapsule or microsphere type;37
10.1.4;2.4 Microcapsule size, shape, and payload;37
10.1.5;2.5 Physicochemical factors;39
10.1.5.1;2.5.1 Molecular Weight of the Active Agent;39
10.1.5.2;2.5.2 Functional Moiety and Surface Charge;39
10.1.5.3;2.5.3 Concentration;39
10.1.5.4;2.5.4 Solubility;39
10.1.5.5;2.5.5 Wettability;40
10.1.5.6;2.5.6 Temperature;40
10.1.5.7;2.5.7 Process Factors;41
10.1.6;2.6 Mechanism of diffusion;41
10.1.6.1;2.6.1 Zero Order or Pseudo-Zero Order Diffusion Model;41
10.1.6.2;2.6.2 Fickian Diffusion Model;42
10.1.6.3;2.6.3 First Order Diffusion Model;43
10.1.6.4;2.6.4 Higuchi’s Diffusion Model;43
10.1.6.5;2.6.5 Case II Diffusion;43
10.1.6.6;2.6.6 Osmosis;43
10.1.7;2.7 Conclusion;45
10.1.8;References;45
10.2;3 Applications of Mass and Heat Transfer in Microencapsulation Processes;46
10.2.1;3.1 Introduction;46
10.2.2;3.2 Mechanism of diffusion;46
10.2.3;3.3 Zero order or pseudo-zero order diffusion model;47
10.2.4;3.4 Fickian diffusion model;48
10.2.4.1;3.4.1 Mass Transfer in a Microsphere Morphology;49
10.2.4.2;3.4.2 Unsteady-State Diffusion From a Microsphere;50
10.2.4.3;3.4.3 Mass Transfer in a Microcapsule Morphology;51
10.2.4.4;3.4.4 Analogy to Heat Transfer;52
10.2.5;3.5 First order diffusion model;53
10.2.6;3.6 Conclusion;53
10.2.7;References;53
11;III: Process Technologies in Microencapsulation;54
11.1;4 Overview of Microencapsulation Process Technologies;56
11.1.1;4.1 Introduction;56
11.1.2;4.2 Process components;56
11.1.3;4.3 Processes;58
11.1.3.1;4.3.1 Atomization;58
11.1.3.2;4.3.2 Spray Coating;58
11.1.3.3;4.3.3 Coextrusion;58
11.1.3.4;4.3.4 Emulsion Based;59
11.1.3.5;4.3.5 Other;59
11.1.4;4.4 Comparisons;60
11.1.4.1;4.4.1 Size;60
11.1.4.2;4.4.2 Morphology;61
11.1.4.3;4.4.3 Payload;62
11.1.4.4;4.4.4 Materials;63
11.1.4.5;4.4.5 Production Scale;64
11.1.4.6;4.4.6 Cost;64
11.1.5;4.5 Emerging processes and trends;65
11.1.6;4.6 Process selection;65
11.1.7;References;66
11.2;5 Atomization and Spray-Drying Processes;68
11.2.1;5.1 Introduction;68
11.2.2;5.2 Atomization;69
11.2.3;5.3 Drying configurations;71
11.2.3.1;5.3.1 Mass Transfer and Heat Transfer Considerations;74
11.2.4;5.4 Operational practice;75
11.2.5;5.5 Feed preparation;76
11.2.6;5.6 Recent advances in atomization and spray-drying processes;76
11.2.7;5.7 Conclusion;76
11.2.8;References;77
11.3;6 New Advances in Spray-Drying Processes;78
11.3.1;6.1 Introduction;78
11.3.2;6.2 Technologies;78
11.3.3;6.3 Computational optimization;78
11.3.4;6.4 Analyzing the drying process of a droplet;79
11.3.5;6.5 Drying kinetics as input for CFD;81
11.3.5.1;6.5.1 Spray Drying Equipment and Controls;81
11.3.5.2;6.5.2 Temperature Control;81
11.3.5.3;6.5.3 Flexible Spray Drying, Agglomeration, and Granulates;81
11.3.5.4;6.5.4 Cleaning-In-Place;83
11.3.5.5;6.5.5 Sanitary Bag Filters;83
11.3.5.6;6.5.6 Process Controls and Adaptive Feedback;83
11.3.6;6.6 Conclusion;84
11.3.7;References;84
11.4;7 Fluid Bed Coating-Based Microencapsulation;86
11.4.1;7.1 Introduction;86
11.4.2;7.2 Wurster (bottom spray) fluid bed coating;89
11.4.3;7.3 Top spray granulation;90
11.4.4;7.4 Rotary tangential spray granulation;90
11.4.5;7.5 Static tangential spray granulation;90
11.4.6;7.6 Discussion;90
11.4.6.1;7.6.1 Fluidization;90
11.4.6.2;7.6.2 Temperature;92
11.4.6.3;7.6.3 Drying Capacity;93
11.4.6.4;7.6.4 Nozzles and Spray;95
11.4.6.5;7.6.5 Scale-Up;96
11.4.6.6;7.6.6 Continuous Processes;97
11.4.7;7.7 Formulation considerations;97
11.4.8;7.8 Conclusion;98
11.4.9;References;99
11.5;8 Extrusion-Based Microencapsulation for the Food Industry;102
11.5.1;8.1 Introduction;102
11.5.2;8.2 Evolution of extrusion technology;104
11.5.3;8.3 Conclusion;105
11.5.4;References;105
11.6;9 Spheronization, Granulation, Pelletization, and Agglomeration Processes;106
11.6.1;9.1 Introduction;106
11.6.2;9.2 Basic equipment;108
11.6.3;9.3 Batch fluidized beds for drying, agglomeration, and coating;109
11.6.4;9.4 Continuous fluidized beds for drying, agglomeration, spray granulation, and coating;110
11.6.5;9.5 ProCell type of continuous spouted beds for drying, agglomeration, spray granulation, and coating;111
11.6.6;9.6 Technical options for pelletization;113
11.6.7;9.7 Technical options for high-shear granulation;114
11.6.8;9.8 Technical options for extrusion;114
11.6.9;9.9 Application case studies;115
11.6.10;9.10 Formulation of enzymes;115
11.6.11;9.11 Formulation of vitamins;117
11.6.12;9.12 Encapsulation of volatile ingredients;117
11.6.13;9.13 Conclusion;118
11.6.14;References;119
11.7;10 Annular Jet-Based Processes;120
11.7.1;10.1 Introduction;120
11.7.2;10.2 Process technologies;120
11.7.2.1;10.2.1 Laminar Flow Breakup;120
11.7.2.2;10.2.2 Vibrational Drip Casting;122
11.7.2.3;10.2.3 Submerged Nozzle;123
11.7.2.4;10.2.4 Flow Focusing;123
11.7.2.5;10.2.5 General Principle;123
11.7.3;10.3 Equipment;123
11.7.3.1;10.3.1 Nisco Engineering;124
11.7.3.2;10.3.2 BUCHI;124
11.7.3.3;10.3.3 BRACE;126
11.7.3.4;10.3.4 Freund Corporation;128
11.7.3.5;10.3.5 Other Annular Jet Systems;128
11.7.4;10.4 Materials;128
11.7.4.1;10.4.1 Encapsulation of Hydrophobic Materials;129
11.7.4.2;10.4.2 Encapsulation of Hydrophilic Agents;130
11.7.5;10.5 Conclusion;131
11.7.6;References;131
11.8;11 Monodispersed Microencapsulation Technology;132
11.8.1;11.1 Introduction;132
11.8.2;11.2 Monodisperse particle fabrication technologies;132
11.8.2.1;11.2.1 Microfluidics;132
11.8.2.2;11.2.2 Electrohydrodynamic Spraying;134
11.8.2.3;11.2.3 Jet Cutting;136
11.8.2.4;11.2.4 Rotary Disc Atomization;137
11.8.2.5;11.2.5 Vibratory Process;137
11.8.2.6;11.2.6 Flow Focusing;139
11.8.2.7;11.2.7 Vibratory Process Combined With a Carrier Stream;140
11.8.3;11.3 Conclusion;142
11.8.4;References;142
11.9;12 Coacervation Processes;146
11.9.1;12.1 Introduction;146
11.9.2;12.2 Selection of wall materials;147
11.9.2.1;12.2.1 Proteins;147
11.9.2.2;12.2.2 Polysaccharides;148
11.9.3;12.3 Coacervation encapsulation processes;149
11.9.4;12.4 Parameters influencing the formation of coacervates;151
11.9.5;12.5 Evaluation of coacervates;153
11.9.5.1;12.5.1 Structure;153
11.9.5.2;12.5.2 Size and Size Distribution of Capsules;153
11.9.5.3;12.5.3 Encapsulation Efficiency;154
11.9.6;12.6 Stability, controlled release, and bioavailability;155
11.9.7;12.7 Conclusion;156
11.9.8;References;156
11.10;13 Application of Liposomes in the Food Industry;160
11.10.1;13.1 Introduction;160
11.10.2;13.2 What are liposomes?;160
11.10.3;13.3 Liposome stability;162
11.10.3.1;13.3.1 Hydrolysis of Liposomes;163
11.10.3.2;13.3.2 Effect of Buffer and pH;164
11.10.3.3;13.3.3 Oxidation of Unsaturated Phospholipids;164
11.10.3.4;13.3.4 Saturated Ether Lipids;165
11.10.3.5;13.3.5 Application of Liposome as a Solubility Tool;165
11.10.3.6;13.3.6 Application of Liposomes in the Food and Beverage Industry;167
11.10.3.7;13.3.7 Application of Liposomes in Protecting Small Molecules and Enzymes;167
11.10.3.8;13.3.8 Liposome Encapsulation of Antimicrobials;169
11.10.3.9;13.3.9 Application of Liposomes in the Accelerated Ripening of Cheese;169
11.10.3.10;13.3.10 Encapsulation of Maillard Browning Reagent in Liposomes;170
11.10.4;13.4 Conclusion;170
11.10.5;References;171
11.11;14 Nanoencapsulation in the Food Industry: Technology of the Future;172
11.11.1;14.1 Introduction;172
11.11.2;14.2 Technology advantages;172
11.11.3;14.3 Classification of nanoencapsulated systems;172
11.11.4;14.4 Liquid–liquid systems;173
11.11.5;14.5 Microemulsions;173
11.11.6;14.6 Nanoemulsions;175
11.11.7;14.7 Liposomes;175
11.11.8;14.8 Solid–Lipid nanoparticles;175
11.11.9;14.9 Solid–Solid systems;175
11.11.10;14.10 Nanofibers;176
11.11.11;14.11 Conclusion;176
11.11.12;References;176
11.12;15 Aqueous Two-Phase Systems for Microencapsulation in Food Applications;178
11.12.1;15.1 Introduction;178
11.12.2;15.2 Encapsulation in films, gels, and dispersed gel particles;179
11.12.3;15.3 Encapsulation in particulate systems;180
11.12.3.1;15.3.1 Spray-Dried Particles;180
11.12.3.1.1;15.3.1.1 Spray-Dried ATPS for Enzyme Encapsulation;180
11.12.3.1.2;15.3.1.2 Encapsulation of Probiotics in ATPS;182
11.12.3.1.3;15.3.1.3 PVP–Dextran Conceptual Study;183
11.12.3.1.4;15.3.1.4 Polysaccharide-Based Systems;183
11.12.3.1.5;15.3.1.5 Protein–Polysaccharide Systems;184
11.12.3.2;15.3.2 Core–Shell Particles;186
11.12.3.3;15.3.3 Microspheres Produced in ATPS;187
11.12.4;15.4 Conclusion;189
11.12.5;References;189
12;IV: Materials Used in Microencapsulation;192
12.1;16 Selection of Materials for Microencapsulation;194
12.1.1;16.1 Introduction;194
12.1.2;16.2 Morphological design;194
12.1.3;16.3 Material selection;194
12.1.4;16.4 Hydrophilic materials;198
12.1.4.1;16.4.1 Proteins;198
12.1.4.2;16.4.2 Carbohydrates;200
12.1.5;16.5 Hydrophobic materials;201
12.1.6;16.6 Conclusions;201
12.1.7;References;201
12.2;17 Cellulose Polymers in Microencapsulation of Food Additives;202
12.2.1;17.1 Introduction;202
12.2.2;17.2 Properties of cellulosic polymers;202
12.2.2.1;17.2.1 General Properties;202
12.2.2.2;17.2.2 Solubility;203
12.2.2.3;17.2.3 Thermal Gelation;204
12.2.2.4;17.2.4 Surface Activity;205
12.2.2.5;17.2.5 Stability;206
12.2.3;17.3 Applications of cellulosic polymers in microencapsulation;207
12.2.3.1;17.3.1 Emulsion Stabilizers and Dispersants;207
12.2.3.2;17.3.2 Formulation Binders;208
12.2.3.3;17.3.3 Film and Barrier Coatings;208
12.2.4;17.4 Process considerations using cellulosic polymers;211
12.2.5;References;212
12.3;18 The Use of Starch-Based Materials for Microencapsulation;216
12.3.1;18.1 Introduction;216
12.3.2;18.2 Starch and starch modifications;216
12.3.2.1;18.2.1 The Nature of Starches;216
12.3.2.2;18.2.2 Food Starch Modifications;218
12.3.2.2.1;18.2.2.1 Chemical Modifications;219
12.3.2.2.2;18.2.2.2 Physical Treatments;219
12.3.2.2.3;18.2.2.3 Enzymatic Treatment;219
12.3.2.2.4;18.2.2.4 Hydrophobic Modification;220
12.3.3;18.3 Characteristics of OSA starches;221
12.3.4;18.4 Using modified starches for microencapsulation;221
12.3.4.1;18.4.1 Typical Spray Drying Practices Using OSA Starches;222
12.3.4.2;18.4.2 A Dynamic Model and its Relevance to Matrix Materials;224
12.3.4.3;18.4.3 Case Studies;227
12.3.4.3.1;18.4.3.1 Case 1—Flavor Encapsulation in the Spray Drying Process;227
12.3.4.3.2;18.4.3.2 Case 2—Vitamin Encapsulation;228
12.3.4.3.3;18.4.3.3 Case 3—Fat Encapsulation;229
12.3.4.3.4;18.4.3.4 Case 4—Gelatin Replacement in Spray Congealing;229
12.3.4.3.5;18.4.3.5 Case 5—Extrusion;229
12.3.4.3.6;18.4.3.6 Case 6—Plating;229
12.3.5;18.5 Conclusion;230
12.3.6;Acknowledgments;230
12.3.7;References;230
12.4;19 Use of Milk Proteins for Encapsulation of Food Ingredients;232
12.4.1;19.1 Introduction;232
12.4.2;19.2 Milk proteins and their function in encapsulation;233
12.4.2.1;19.2.1 Milk Proteins;233
12.4.2.2;19.2.2 Function of Milk Proteins in Encapsulation;234
12.4.2.3;19.2.3 Encapsulation Technologies Used When Formulating with Milk Proteins;234
12.4.3;19.3 Encapsulation systems using caseins and whey proteins;235
12.4.3.1;19.3.1 Milk Proteins and Processes for Encapsulating Hydrophobic Components;235
12.4.3.2;19.3.2 Milk Proteins and Processes for Encapsulating Hydrophilic Components;235
12.4.3.3;19.3.3 Milk Proteins and Processes for Encapsulating Probiotics;237
12.4.4;19.4 Milk proteins in combination with other materials as the encapsulating matrix;237
12.4.4.1;19.4.1 Milk Proteins in Combination with other Materials and Processes for Encapsulating Hydrophobic Components;237
12.4.4.2;19.4.2 Milk Proteins in Combination with other Materials and Processes for Encapsulating Hydrophilic Components;240
12.4.4.3;19.4.3 Milk Proteins in Combination with other Materials and Processes for Encapsulating Probiotics;241
12.4.5;19.5 Patent-based strategies;241
12.4.6;19.6 Conclusion;243
12.4.7;References;243
12.5;20 Gelatin and Other Proteins for Microencapsulation;248
12.5.1;20.1 Introduction;248
12.5.2;20.2 Gelatin;248
12.5.2.1;20.2.1 Gelatin Manufacture: From Collagen to Gelatin;248
12.5.2.2;20.2.2 Gelation of Gelatin;250
12.5.2.3;20.2.3 Gelatin as Shell Material in Microencapsulation;251
12.5.2.3.1;20.2.3.1 Spray Drying;251
12.5.2.3.2;20.2.3.2 Gelation;252
12.5.2.3.3;20.2.3.3 Coacervation;253
12.5.3;20.3 Soy protein;253
12.5.3.1;20.3.1 Spray Drying;254
12.5.3.2;20.3.2 Coacervation;255
12.5.3.3;20.3.3 Gelation;255
12.5.4;20.4 Zein protein;255
12.5.4.1;20.4.1 Spray Drying;256
12.5.4.2;20.4.2 Zein Microspheres by Solvent Evaporation;256
12.5.5;20.5 Pea protein;256
12.5.5.1;20.5.1 Spray Drying;256
12.5.5.2;20.5.2 Coacervation and Gelation;257
12.5.6;20.6 Conclusion;257
12.5.7;References;257
12.6;21 Hydrocolloids and Gums as Encapsulating Agents;262
12.6.1;21.1 Introduction;262
12.6.2;21.2 Materials;262
12.6.2.1;21.2.1 Gum Arabic;262
12.6.2.2;21.2.2 Alginates;265
12.6.3;21.3 Applications;266
12.6.3.1;21.3.1 Antioxidants;266
12.6.3.2;21.3.2 Flavors;268
12.6.3.3;21.3.3 Microorganisms;268
12.6.3.4;21.3.4 Other Applications;270
12.6.4;21.4 Conclusion;271
12.6.5;References;271
12.7;22 Fats and Waxes in Microencapsulation of Food Ingredients;274
12.7.1;22.1 Introduction;274
12.7.2;22.2 Structural diversity in lipids;274
12.7.2.1;22.2.1 Hydrocarbon-Rich Substances;274
12.7.2.2;22.2.2 Simple Lipids;276
12.7.2.3;22.2.3 Lipid-Derived Substances;278
12.7.3;22.3 Physicochemical properties of lipids;278
12.7.3.1;22.3.1 Melt and Crystallization in Lipids;278
12.7.3.2;22.3.2 Moisture Barrier in Lipids;281
12.7.3.3;22.3.3 Surface Activity in Lipids;281
12.7.3.4;22.3.4 Chemical Stability of Lipids;282
12.7.4;22.4 Lipids in microencapsulation applications;282
12.7.4.1;22.4.1 Techniques;282
12.7.4.2;22.4.2 Applications;284
12.7.4.2.1;22.4.2.1 Vitamins and Minerals;284
12.7.4.2.2;22.4.2.2 Food Additives;285
12.7.4.2.3;22.4.2.3 Enzymes and Microorganisms;285
12.7.5;22.5 Conclusion;286
12.7.6;References;286
12.8;23 Yeast Cells and Yeast-Based Materials for Microencapsulation;288
12.8.1;23.1 Introduction;288
12.8.2;23.2 Description of the yeast cell as encapsulation material;288
12.8.3;23.3 The yeast cell encapsulation process;289
12.8.4;23.4 Parameters that affect yeast encapsulation performance;289
12.8.4.1;23.4.1 Origin and Pretreatment of Yeast Cells Used for Encapsulation;291
12.8.4.2;23.4.2 The Active Ingredient;295
12.8.4.3;23.4.3 Medium of Encapsulation;296
12.8.4.4;23.4.4 Encapsulation Temperature;296
12.8.4.5;23.4.5 Mass Ratio Compound: Yeast Cells;296
12.8.5;23.5 Properties of yeast microcapsules;297
12.8.5.1;23.5.1 Encapsulation of Both Hydrophilic and Hydrophobic Compounds and High Loading;297
12.8.5.2;23.5.2 Yeast Encapsulation and Protection;297
12.8.5.3;23.5.3 Release Properties and Controlled/Targeted Delivery of Yeast Encapsulated Compounds;298
12.8.5.4;23.5.4 Yeast Encapsulation and Sensory Evaluation;298
12.8.5.5;23.5.5 Antioxidant Properties and Solubility of the Yeast Encapsulated Compound;299
12.8.5.6;23.5.6 Nutritional Value and Anticancer Properties of Yeast Cells and Yeast Microcapsules;299
12.8.6;23.6 Applications of yeast microcapsules in the food industry;299
12.8.6.1;23.6.1 Yeast Encapsulation Patents;299
12.8.7;23.7 Conclusion;301
12.8.8;References;301
12.9;24 Pollen and Spore Shells—Nature’s Microcapsules;304
12.9.1;24.1 Introduction;304
12.9.2;24.2 Concept behind using pollen shells for microencapsulation;304
12.9.3;24.3 Structural and chemical features of pollen shells useful for microcapsule formation;305
12.9.3.1;24.3.1 Structural Features;305
12.9.3.2;24.3.2 Chemical Features;307
12.9.4;24.4 Extraction of pollen shells;307
12.9.4.1;24.4.1 Single Layered Shells;307
12.9.4.1.1;24.4.1.1 Chemical Methods;307
12.9.4.1.2;24.4.1.2 Enzymic Methods;308
12.9.4.2;24.4.2 Double-Layered Shells;308
12.9.4.3;24.4.3 Quality Control and Analysis of Extracted Shells;308
12.9.4.3.1;24.4.3.1 Routine Quality Control of Extracted Shells;308
12.9.4.3.2;24.4.3.2 Non-Toxicity and Non-Allergenicity of Extracted Shells;308
12.9.5;24.5 Modifications to pollen shells;309
12.9.6;24.6 Loading of actives;309
12.9.6.1;24.6.1 Passive Encapsulation;310
12.9.6.2;24.6.2 Vacuum-Aided Encapsulation;310
12.9.6.3;24.6.3 Centrifugal-Aided Encapsulation;310
12.9.6.4;24.6.4 Compression-Aided Encapsulation;310
12.9.6.5;24.6.5 Encapsulation of Sparingly Soluble Substances;310
12.9.7;24.7 Quality control of loaded shells;311
12.9.8;24.8 Release of actives;311
12.9.8.1;24.8.1 Release by Passive Diffusion;312
12.9.8.2;24.8.2 Compression-Aided Release;312
12.9.8.3;24.8.3 Control of Release Using Coencapsulation and Coating;312
12.9.9;24.9 Applications of pollen shells for microencapsulation relevant to the food industry;313
12.9.9.1;24.9.1 Taste Masking of Actives;313
12.9.9.2;24.9.2 Prolonging shelf-Life: Antioxidant, Light Shielding of Actives;313
12.9.9.3;24.9.3 Enhancing Bioavailability of an Active;314
12.9.10;24.10 Perceived advantages of pollen shells for microencapsulation;314
12.9.11;Appendix: Chemical Structure of Sporopollenin;315
12.9.12;References;316
12.10;25 Mesoporous Solid Carrier Particles in Controlled Delivery and Release;320
12.10.1;25.1 Introduction;320
12.10.1.1;25.1.1 Factors Affecting Loading and Release;321
12.10.1.1.1;25.1.1.1 Pore Size Versus Molecule Size;321
12.10.1.1.2;25.1.1.2 Effect of Exterior Particle Size on Loading;321
12.10.2;25.2 Carrier particles;322
12.10.2.1;25.2.1 How is Porosity Created?;323
12.10.2.2;25.2.2 Particle Structures;323
12.10.3;25.3 Loading methods;324
12.10.3.1;25.3.1 Incipient Wetness;327
12.10.3.2;25.3.2 Melt Method;327
12.10.3.3;25.3.3 Adsorption from a Solution;327
12.10.3.4;25.3.4 Effects of Chemistry of the Active on Loading Efficiency;328
12.10.3.5;25.3.5 In situ Loading;328
12.10.3.5.1;25.3.5.1 Philicity Strategy: Physical Immobilization Based on Differences in Solubility;328
12.10.3.5.2;25.3.5.2 Bonding Strategy: Active Molecules as Framework Structured Materials;328
12.10.3.5.3;25.3.5.3 Bifunctional Strategy: Chemical Bonding at the Framework–Ionic Interface;328
12.10.4;25.4 Characterization of unloaded and loaded particles;328
12.10.5;25.5 Release measurements;329
12.10.5.1;25.5.1 Immediate Release;329
12.10.5.2;25.5.2 Extended/Slow Release;329
12.10.5.3;25.5.3 Triggered Release;330
12.10.5.4;25.5.4 Choosing Release Medium and Conditions;330
12.10.5.5;25.5.5 How to Handle Particles in Release Media;330
12.10.5.6;25.5.6 Continuous Measurements;330
12.10.5.7;25.5.7 Point Measurements;331
12.10.6;25.6 The effects of characteristics of the active on loading and release;331
12.10.7;25.7 Effects of loading medium;336
12.10.8;25.8 How can loading and release be controlled?;337
12.10.9;References;338
13;V: Testing and Quality Control;342
13.1;26 Testing Tools and Physical, Chemical, and Microbiological Characterization of Microencapsulated Systems;344
13.1.1;26.1 Introduction;344
13.1.2;26.2 Physical characterization;344
13.1.2.1;26.2.1 Morphology and Size Distribution;350
13.1.2.2;26.2.2 Electron Microscopy;350
13.1.2.3;26.2.3 Particle Sizing Methods;353
13.1.2.4;26.2.4 Mechanical Strength;355
13.1.2.5;26.2.5 Glass Transition Temperature and Degree of Crystallinity;356
13.1.2.6;26.2.6 Flowability;357
13.1.3;26.3 Chemical characterization;358
13.1.3.1;26.3.1 Gas Chromatography and High Performance Liquid Chromatography;358
13.1.3.2;26.3.2 Flavor Active Dispersion;358
13.1.3.3;26.3.3 Flavor Retention and Stability;360
13.1.3.3.1;26.3.3.1 Flavor Retention;360
13.1.3.3.2;26.3.3.2 Flavor Stability;361
13.1.3.3.3;26.3.3.3 Characterization of Flavor Release: Methods, Rates, and Mechanisms;362
13.1.3.3.3.1;26.3.3.3.1 Release Rates;362
13.1.3.3.3.2;26.3.3.3.2 Mechanism of Release;362
13.1.3.3.3.2.1;26.3.3.3.2.1 Release by Physical Rupture;362
13.1.3.3.3.2.2;26.3.3.3.2.2 Release by Diffusion;362
13.1.3.3.3.2.3;26.3.3.3.2.3 Release by Dissolution or Melting;365
13.1.3.3.3.2.4;26.3.3.3.2.4 Release by Biodegradation;365
13.1.3.3.4;26.3.3.4 Oxidation;365
13.1.3.4;26.3.4 Safety Testing;366
13.1.3.4.1;26.3.4.1 Toxicology;366
13.1.3.4.2;26.3.4.2 Microbiology;367
13.1.4;26.4 Conclusion;367
13.1.5;References;369
13.2;27 Real-Time Analysis of Oxidative Barrier Properties of Encapsulation Systems;374
13.2.1;27.1 Introduction;374
13.2.2;27.2 Rapid methods to measure interaction of encapsulation systems with oxidizing agents;375
13.2.2.1;27.2.1 Measurement of Interactions of Encapsulation Systems With Hydroxyl radicals;375
13.2.2.2;27.2.2 Measurement of Interactions of Encapsulation Systems With Peroxyl Radicals;377
13.2.2.3;27.2.3 Measurement of Interactions of Encapsulation Systems With Oxygen;378
13.2.2.4;27.2.4 Electron Spin Resonance-Based Methods;379
13.2.3;27.3 Applications of rapid measurement techniques;380
13.2.3.1;27.3.1 Impact of Nature of Lipid Core on Susceptibility of Encapsulated Material Towards Oxidation;380
13.2.3.2;27.3.2 Correlation Between Interfacial Mobility and Free Radical Transport;381
13.2.3.3;27.3.3 Effect of Antioxidant Properties of Emulsifier on Free Radical Transport;382
13.2.3.4;27.3.4 Correlation Between Radical Permeation Measurements and Stability of Encapsulated Compounds;383
13.2.3.5;27.3.5 Effect of Interfacial Modifications of Permeation of Oxygen Within Encapsulation Systems;383
13.2.4;27.4 Conclusion;384
13.2.5;References;385
13.3;28 Stability Characterization and Sensory Testing in Food Products Containing Microencapsulants;388
13.3.1;28.1 Introduction;388
13.3.2;28.2 Measuring stability;388
13.3.3;28.3 Factors affecting wall stability;388
13.3.3.1;28.3.1 Surface Morphology and Characteristics;389
13.3.3.1.1;28.3.1.1 Microscopy;389
13.3.3.1.2;28.3.1.2 Electron Spectroscopy for Chemical Analysis;389
13.3.3.2;28.3.2 Particle Size;390
13.3.3.3;28.3.3 Moisture Content and Water Activity;390
13.3.4;28.4 Factors affecting core stability;391
13.3.4.1;28.4.1 Environmental Factors Affecting Core Stability;391
13.3.4.1.1;28.4.1.1 Light;391
13.3.4.1.2;28.4.1.2 pH;391
13.3.4.1.3;28.4.1.3 Temperature;392
13.3.4.2;28.4.2 Oxidation Effects on Core Stability;392
13.3.4.2.1;28.4.2.1 Measurement of Core Oxidation;393
13.3.4.2.2;28.4.2.2 Measurement of Surface Oxidation;393
13.3.5;28.5 Sensory impacts of microencapsulated ingredients in foods;394
13.3.5.1;28.5.1 The Field of Sensory Evaluation;394
13.3.5.2;28.5.2 Sensory Attributes and Human Senses;394
13.3.5.2.1;28.5.2.1 Appearance and Vision;394
13.3.5.2.2;28.5.2.2 Taste and Gustation;394
13.3.5.2.3;28.5.2.3 Odor and Olfaction;394
13.3.5.2.4;28.5.2.4 Texture and Touch;395
13.3.5.3;28.5.3 Sensory Impacts of Microencapsulated Food Ingredients;395
13.3.5.3.1;28.5.3.1 Textural Impacts of Microencapsulated Food Ingredients;395
13.3.5.3.2;28.5.3.2 Flavor and Odor Impacts of Microencapsulated Food Ingredients;396
13.3.5.3.3;28.5.3.3 The Impact on Hedonic Ratings and Consumer Perception Due to Microencapsulated Food Ingredients;397
13.3.5.4;28.5.4 Considerations for Sensory Testing of Microencapsulated Food Ingredients;397
13.3.5.5;28.5.5 Choosing a Sensory Methodology for Testing;398
13.3.6;28.6 Conclusion;398
13.3.7;References;398
14;VI: Regulatory, Quality, Process Scale-Up, Packaging, and Economics;404
14.1;29 Regulatory Considerations of Encapsulation Used in the Food Industry;406
14.1.1;29.1 Introduction;406
14.1.2;29.2 Animal derivatives;406
14.1.3;29.3 Allergens;407
14.1.4;29.4 Genetic modification and organic;407
14.1.5;29.5 “Natural” claims;408
14.1.6;29.6 Nutritional content;408
14.1.7;29.7 Safe consumption;409
14.1.8;29.8 Safe handling;410
14.1.9;29.9 Conclusion;411
14.1.10;References;411
14.2;30 Process Scale-up Considerations for Microencapsulation Processes;412
14.2.1;30.1 Definition of scale-up within the context of microencapsulation process technology;412
14.2.2;30.2 Physical phenomena in controlled-release process technology;412
14.2.2.1;30.2.1 Emulsification;413
14.2.2.2;30.2.2 Dissolution;413
14.2.2.3;30.2.3 Agitation and/or Suspension;413
14.2.2.4;30.2.4 Fluidization;414
14.2.2.5;30.2.5 Atomization, Drying, or Solidification (Fusion);414
14.2.3;30.3 Basic quality by design principles;414
14.2.3.1;30.3.1 Introduction;414
14.2.3.2;30.3.2 QbD Terms;415
14.2.4;30.4 Tools for improved scaling of microencapsulation process technologies;415
14.2.4.1;30.4.1 Knowledge of the Physics of the Processes;415
14.2.4.2;30.4.2 Experimentation;416
14.2.4.3;30.4.3 Examination of Critical Process Parameters;416
14.2.4.4;30.4.4 Process Efficiency;416
14.2.4.5;30.4.5 Mass Balances;416
14.2.4.6;30.4.6 Developing Quality Control Tests, Specifications—the Real World;417
14.2.5;30.5 Troublesome assumptions;417
14.2.6;30.6 Why there are often problems in scale-up;417
14.2.7;30.7 Time and cost constraints;417
14.2.8;30.8 Case study: spray drying and spray congealing;417
14.2.8.1;30.8.1 Emulsion System for Nutritional Supplement;418
14.2.8.2;30.8.2 Spray Congealed Product;418
14.2.9;30.9 Conclusion;419
14.2.10;References;419
14.3;31 Microencapsulation and Packaging—Value Added Solutions to Product Development;420
14.3.1;31.1 Smart packaging: sensors and heat management materials;420
14.3.1.1;31.1.1 Sensors;420
14.3.1.2;31.1.2 Heat Management Materials;421
14.3.2;31.2 Bioactive packaging;423
14.3.2.1;31.2.1 Incorporation of Bioactive/Encapsulated Bioactive Substances in the Packaging Wall;424
14.3.2.2;31.2.2 Incorporation of the Bioactive/Encapsulated Bioactive Substance in an Inner Coating of the Packaging Wall;425
14.3.2.3;31.2.3 Enzymatic Packaging;426
14.3.3;31.3 Innovative packaging technologies: printing, printed electronics, and scratch and sniff;426
14.3.4;31.4 Conclusion and outlook;427
14.3.5;References;427
14.4;32 The Economics of Microencapsulation in the Food Industry;430
14.4.1;32.1 Introduction;430
14.4.2;32.2 The process;430
14.4.3;32.3 Criteria;431
14.4.4;32.4 Processing costs;432
14.4.5;32.5 Conclusion;438
14.4.6;References;438
15;VII: Microencapsulation Applications;440
15.1;33 Novel Concepts and Challenges of Flavor Microencapsulation and Taste Modification;442
15.1.1;33.1 Introduction;442
15.1.2;33.2 Challenges of flavor encapsulation;444
15.1.2.1;33.2.1 Typical Flavor Composition;444
15.1.2.2;33.2.2 Characterization of Flavor Phase Equilibrium Through the Use of Vapor Pressure, Molecular Size, Solubility, Taste an...;445
15.1.2.2.1;33.2.2.1 Vapor Pressure;445
15.1.2.2.2;33.2.2.2 Molecular Size and Transport;447
15.1.2.2.3;33.2.2.3 Phase Equilibrium;448
15.1.2.2.3.1;33.2.2.3.1 Chemical Potential and Intermolecular Forces;448
15.1.2.2.3.2;33.2.2.3.2 Solubility, Linear Solvation Energy Relationships (LSER), and Flavor Delivery;449
15.1.3;33.3 Summary of common flavor microencapsulation techniques;450
15.1.3.1;33.3.1 Spray Drying;452
15.1.3.2;33.3.2 Spray Chilling;452
15.1.3.3;33.3.3 Melt Injection;453
15.1.3.4;33.3.4 Melt Extrusion;453
15.1.3.5;33.3.5 Molecular Inclusion Complexation;453
15.1.3.6;33.3.6 Coacervation;454
15.1.3.7;33.3.7 Novel Techniques;454
15.1.3.7.1;33.3.7.1 Evaporation-Induced Self-Assembly (EISA);454
15.1.4;33.4 Summary of flavor microencapsulation materials;454
15.1.5;33.5 Applications of microencapsulated flavor;456
15.1.5.1;33.5.1 Controlled Release;456
15.1.5.1.1;33.5.1.1 Chewing Gum;457
15.1.5.1.1.1;33.5.1.1.1 Upfront Flavor Release;457
15.1.5.1.1.2;33.5.1.1.2 Sustained Flavor Release;457
15.1.5.1.1.3;33.5.1.1.3 Flavor Changing Chewing Gum;458
15.1.5.1.2;33.5.1.2 Flavor Changing Ice Cream;458
15.1.5.1.3;33.5.1.3 Encapsulated Flavor in a Beverage Straw;458
15.1.5.2;33.5.2 Protections;458
15.1.5.2.1;33.5.2.1 Chewing Gum;458
15.1.5.2.2;33.5.2.2 Hard Candy;458
15.1.5.2.3;33.5.2.3 Bakery Products;459
15.1.5.2.4;33.5.2.4 Dry mix Beverage;459
15.1.5.3;33.5.3 Taste Masking;459
15.1.5.3.1;33.5.3.1 Masking of Fish Odor;459
15.1.5.3.2;33.5.3.2 Caffeine;460
15.1.5.3.3;33.5.3.3 Flavor Masking by Molecular Inclusion;460
15.1.6;33.6 Conclusion;460
15.1.7;Acknowledgments;460
15.1.8;References;460
15.2;34 Flavor Release and Application in Chewing Gum and Confections;464
15.2.1;34.1 Introduction;464
15.2.2;34.2 Why microencapsulate flavors?;464
15.2.3;34.3 Microencapsulation forms;465
15.2.4;34.4 Microencapsulation forms—other types;466
15.2.5;34.5 Chewing gum applications—designing for customized performance;466
15.2.6;34.6 Microencapsulated flavors—when to use them?;469
15.2.7;34.7 To be effective, microencapsulated flavors also require sustained and long-lasting sweetness and sourness;470
15.2.8;34.8 Where is microencapsulated flavor applied in chewing gum applications?;470
15.2.9;34.9 Challenges in microencapsulating flavors;471
15.2.10;34.10 Other confectionery applications;471
15.2.11;34.11 Chewing gum patent review—main companies: Wrigley, Warner–Lambert, Cadbury–Adams/Kraft Foods Global, Nabisco/Hershey ...;471
15.2.12;34.12 Conclusion;471
15.2.13;Appendix: Chewing Gum Patent Review;471
15.2.13.1;Wm. Wrigley Jr. Company;472
15.2.13.2;Warner–Lambert;472
15.2.13.3;Cadbury Adams/Kraft Foods Global (formerly Pfizer/Warner–Lambert and currently Mondelez International);473
15.2.13.4;Nabisco (currently Hershey gum business);473
15.2.14;References;474
15.3;35 Novel Microencapsulation System to Improve Controlled Delivery of Cup Aroma During Preparation of Hot Instant Coffee Bev...;476
15.3.1;35.1 Introduction;476
15.3.2;35.2 Novel microencapsulation system development;477
15.3.3;35.3 Guide to related publications by the authors;478
15.3.4;35.4 Volatile carrier liquids;478
15.3.5;35.5 Model coffee aroma systems;479
15.3.6;35.6 Coffee microcapsule properties;481
15.3.7;35.7 Coffee-aromatized carriers;482
15.3.8;35.8 Carrier-free coffee essences;484
15.3.9;35.9 Discussion;484
15.3.10;Acknowledgments;488
15.3.11;References;488
15.4;36 Protection and Delivery of Probiotics for Use in Foods;490
15.4.1;36.1 Introduction;490
15.4.2;36.2 Microencapsulation and delivery concepts for probiotics;491
15.4.2.1;36.2.1 Entrapment in Polymer Matrix;491
15.4.2.2;36.2.2 Fat and Polymer Coating;492
15.4.2.3;36.2.3 Extrusion-Spheronization;494
15.4.3;36.3 Drying methods;495
15.4.3.1;36.3.1 Freeze Drying;495
15.4.3.2;36.3.2 Drying by Glass Formation;496
15.4.3.3;36.3.3 Drying by Foam Formation;497
15.4.3.4;36.3.4 Controlled Low-Temperature Vacuum Dehydration;497
15.4.3.5;36.3.5 Perspective on Drying Methods;498
15.4.4;36.4 Delivery forms;499
15.4.4.1;36.4.1 Tablets;499
15.4.4.2;36.4.2 Soft Gel Capsule;500
15.4.4.3;36.4.3 Oil Carrier;500
15.4.5;36.5 Methods for estimating process loss and product shelf-life;500
15.4.5.1;36.5.1 Epifluorescence Microscopic Assessment;501
15.4.5.2;36.5.2 Estimating Storage Shelf-Life;501
15.4.6;36.6 Conclusion;502
15.4.7;References;503
15.5;37 Protection and Masking of Omega-3 and -6 Oils via Microencapsulation;506
15.5.1;37.1 Introduction;506
15.5.1.1;37.1.1 Omega-3 and -6 Oils and their Health Benefits;506
15.5.1.2;37.1.2 The Sources of Omega-3 and -6 PUFAs;507
15.5.1.3;37.1.3 Sensitivity of Omega-3 and -6 PUFAs to Oxidation;507
15.5.2;37.2 Encapsulation technologies used for omega-3 and -6 Polyunsaturated Fatty Acids;508
15.5.2.1;37.2.1 Spray Drying;508
15.5.2.2;37.2.2 Spray Cooling/Chilling;510
15.5.2.3;37.2.3 Fluidized Bed Coating;510
15.5.2.4;37.2.4 Freeze Drying;510
15.5.2.5;37.2.5 Complex Coacervation;511
15.5.2.6;37.2.6 Extrusion Technology;512
15.5.2.7;37.2.7 Other Delivery-Type Systems;513
15.5.3;37.3 Characterization methods;513
15.5.3.1;37.3.1 Physical Properties;513
15.5.3.2;37.3.2 Chemical Properties and Oxidation Stability;514
15.5.3.3;37.3.3 Shelf-Life and Sensory Studies;515
15.5.4;37.4 Applications;516
15.5.5;References;517
15.6;38 Microencapsulation of Vitamins, Minerals, and Nutraceuticals for Food Applications;522
15.6.1;38.1 Microencapsulation as a tool for effective delivery of micronutrients and nutraceuticals;522
15.6.1.1;38.1.1 Importance of Microencapsulation in Fortified and Functional Food Development;522
15.6.1.2;38.1.2 Microencapsulation Technologies for Developing Fortified and Functional Foods;525
15.6.1.3;38.1.3 Encapsulants Commonly Used for Delivery of Micronutrients and/or Nutraceuticals;525
15.6.2;38.2 Criteria for developing microencapsulated delivery systems for micronutrients and nutraceuticals;526
15.6.2.1;38.2.1 In Vitro Bioavailability of Micronutrients and Nutraceuticals;526
15.6.2.2;38.2.2 Encapsulation Efficiency;527
15.6.2.3;38.2.3 Microcapsule Morphology and Size;527
15.6.2.4;38.2.4 Storage Stability;528
15.6.3;38.3 Development of fortified and functional foods;528
15.6.3.1;38.3.1 Importance of Food Fortification in Fighting Micronutrient Malnutrition;528
15.6.3.2;38.3.2 Technical Challenges in Fortification of Staple Foods;529
15.6.3.3;38.3.3 New Trends of Nutraceutical Delivery through Functional Foods;530
15.6.4;38.4 Case study: technical approaches to the fortification of staple foods;532
15.6.4.1;38.4.1 Salt;532
15.6.4.1.1;38.4.1.1 Microencapsulation of Iodine by Spray Drying and Fluidized Bed Drying;533
15.6.4.1.2;38.4.1.2 Encapsulation of Ferrous Fumarate to Mimic Salt Grains;533
15.6.4.1.3;38.4.1.3 Attachment of Spray-Dried Ferrous Fumarate Microcapsules to Coarse Salt;535
15.6.4.2;38.4.2 Rice;535
15.6.4.2.1;38.4.2.1 Fortification of Extruded Rice Grains with Vitamin A;537
15.6.4.2.2;38.4.2.2 Fortification of Extruded Rice Grains with Multiple Micronutrients;538
15.6.4.3;38.4.3 Application of the Extrusion-Based Microencapsulation Technology Platform to Nutraceutical Delivery through Function...;538
15.6.5;38.5 Conclusion and perspectives;539
15.6.6;References;540
15.7;39 Taste-Masking and Controlled Delivery of Functional Food Ingredients;544
15.7.1;39.1 Introduction;544
15.7.2;39.2 Why controlled delivery?;544
15.7.3;39.3 Product application;545
15.7.4;39.4 Matrix to core compatibility;545
15.7.5;39.5 Process of microencapsulation;546
15.7.5.1;39.5.1 Emulsification;546
15.7.5.2;39.5.2 Particle Formation and Entrapment;546
15.7.5.3;39.5.3 Dewatering and Drying;548
15.7.5.4;39.5.4 Particle Sizing;548
15.7.5.5;39.5.5 Particle Coating;548
15.7.5.5.1;39.5.5.1 Coating Solution;549
15.7.5.5.2;39.5.5.2 Coating Process;549
15.7.6;39.6 Characterization of microparticles;549
15.7.6.1;39.6.1 Payload, Residual Surface Oil, and Proportion of Active Compounds;550
15.7.6.2;39.6.2 Amount of Actives Released in a Beverage;550
15.7.6.3;39.6.3 Sensory Evaluation;550
15.7.6.4;39.6.4 Shelf-Life;551
15.7.6.5;39.6.5 In Vitro Release;551
15.7.6.6;39.6.6 Efficacy Testing;552
15.7.6.6.1;39.6.6.1 In Vitro Efficacy Testing;553
15.7.6.6.2;39.6.6.2 In Vivo Efficacy Testing (Preclinical Study);553
15.7.7;39.7 Summary;553
15.7.8;Acknowledgments;553
15.7.9;References;553
15.8;40 Microencapsulated Enzymes in Food Applications;554
15.8.1;40.1 Introduction;554
15.8.2;40.2 Food enzyme market;554
15.8.2.1;40.2.1 Enzyme Manufacturers;554
15.8.2.2;40.2.2 Enzyme Production;555
15.8.3;40.3 Enzyme properties and challenges;556
15.8.3.1;40.3.1 Enzyme Systems;556
15.8.3.2;40.3.2 Safety and Hygiene;556
15.8.4;40.4 Encapsulation;556
15.8.4.1;40.4.1 Spray Drying/Agglomeration;557
15.8.4.2;40.4.2 Spray Chilling or Prilling;558
15.8.4.3;40.4.3 Spray Coating;558
15.8.4.4;40.4.4 High Shear/Wet Granulation;558
15.8.4.5;40.4.5 Extrusion;559
15.8.4.6;40.4.6 Liposomes;559
15.8.5;40.5 Food applications;559
15.8.5.1;40.5.1 Baking;559
15.8.5.2;40.5.2 Sweeteners;560
15.8.5.3;40.5.3 Dairy;561
15.8.5.4;40.5.4 Food Supplements;562
15.8.6;40.6 Conclusion;562
15.8.7;References;562
15.9;41 Commercial Applications of Microencapsulation and Controlled Delivery in Food and Beverage Products;564
15.9.1;41.1 Introduction;564
15.9.2;41.2 Flavor and taste;566
15.9.3;41.3 Health and wellness;566
15.9.4;41.4 Experiential and interactive effects;567
15.9.5;41.5 Interactive packaging;567
15.9.6;41.6 Trends and outlook;568
15.9.7;References;569
15.10;42 Inventing and Using Controlled-Release Technologies;572
15.10.1;42.1 Introduction;572
15.10.2;42.2 A needs-based process;572
15.10.3;42.3 Developmental principles;573
15.10.4;42.4 Release profile;573
15.10.5;42.5 Other issues;573
15.10.6;42.6 Releasing the core;574
15.10.7;42.7 Developing a new technology;574
15.10.8;42.8 Public knowledge;575
15.10.9;42.9 Conclusion;575
15.10.10;References;576
16;Index;578


List of Contributors
Anwar Ahniyaz,     SP Technical Research Institute of Sweden, Stockholm, Sweden Ahmad Akashe,     Ingredient Research Department, Research & Nutrition, Mondelez International, Glenview, Illinois, USA Stephen Atkin,     University of Hull, Hull, UK and Sporomex Ltd., Hull, UK Mary Ann Augustin,     CSIRO Preventative Health National Research Flagship, CSIRO Animal, Food and Health Sciences, Werribee, Victoria, Australia Stephen Beckett,     University of Hull, Hull, UK and Sporomex Ltd., Hull, UK Cory J. Berkland Orbis Biosciences, Kansas City, Kansas, USA University of Kansas, Department of Pharmaceutical Chemistry, Lawrence, Kansas, USA Thorsten Brandau,     BRACE GmbH, Alzenau, Germany Erin Burnside,     FONA International, Geneva, Illinois, USA Keith R. Cadwallader,     Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA Stefano Ceriali,     Global Coffee Technology Department, Research & Development, Mondelez International, Banbury, Oxfordshire, UK Sylvie Cloutier,     DSM Nutritional Products (Legacy Ocean Nutrition Canada Ltd.), Dartmouth, Nova Scotia, Canada Douglas Dale,     DuPont Industrial Biosciences, Palo Alto, California, USA Alberto Diego-Taboada,     University of Hull, Hull, UK and Sporomex Ltd, Hull, UK Levente L. Diosady,     University of Toronto, Toronto, Ontario, Canada Joseph D. Donovan,     Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Nathan H. Dormer,     Orbis Biosciences, Kansas City, Kansas, USA Karin Nordström Dyvelkov,     GEA Niro, GEA Process Engineering A/S, Soeborg, Denmark Ulla Elofsson,     SP Technical Research Institute of Sweden, Stockholm, Sweden Maria José Fabra,     Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology, Paterna (Valencia), Spain Charles Frey,     Coating Place, Inc., Verona, Wisconsin, USA Anilkumar G. Gaonkar Ingredient Research Department, Research & Nutrition, Mondelez International, Glenview, Illinois, USA Kraft Foods Group, Inc., Research and Nutrition, Glenview, Illinois, USA Mondelez International, Glenview, Illinois, USA Verónica Paula Dueik González,     University of Toronto, Toronto, Ontario, Canada Michael Gundlach,     FONA International, Geneva, Illinois, USA Moti Harel,     Advanced BioNutrition Corporation, Columbia, Maryland, USA Jenni Harrington,     Buhler Inc., Plymouth, Minnesota, USA Jennifer Hoffmann,     FONA International, Geneva, Illinois, USA Michael Jacob,     Glatt Ingenieurtechnik GmbH, Weimar, Germany Irwin C. Jacobs,     Jacobs Controlled Release Consulting, LLC, Defiance, Missouri, USA Mikael Järn,     SP Technical Research Institute of Sweden, Stockholm, Sweden Vaios T. Karathanos,     Harokopio University, Athens, Greece Atul Ramesh Khare,     KhareConsulting, Palatine, Illinois, USA Spyros J. Konteles,     Technological Educational Institute of Athens, Athens, Greece Jose Maria Lagaron,     Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology, Paterna (Valencia), Spain Anders Larsson,     SP Technical Research Institute of Sweden, Stockholm, Sweden Soo-Yeun Lee,     Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA YoungSoo Lee,     Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Jason Z. Li,     Ingredion Incorporated, Bridgewater, New Jersey, USA Yao Olive Li,     California State Polytechnic University, Pomona, California, USA Amparo Lopez-Rubio,     Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology, Paterna (Valencia), Spain Lubica Macakova,     SP Technical Research Institute of Sweden, Stockholm, Sweden Grahame Mackenzie,     University of Hull, Hull, UK and Sporomex Ltd., Hull, UK Yang Meng,     DSM Nutritional Products, Dartmouth, Nova Scotia, Canada Marc A. Meyers,     Meyers Consulting, LLC, Richboro, Pennsylvania, USA Anna Millqvist-Fureby,     SP Technical Research Institute of Sweden, Stockholm, Sweden Zahra Mirafzali,     Encapsula NanoSciences, Brentwood, Tennessee, USA Linda L. Moran,     Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA Michael Nickerson,     Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Nitin Nitin,     Department of Food Science and Technology, University of California-Davis, Davis, California, USA Christine Maree Oliver,     CSIRO Preventative Health National Research Flagship, CSIRO Animal, Food and Health Sciences, Werribee, Victoria, Australia James Oxley,     Southwest Research Institute, San Antonio, TX, USA Graciela W. Padua,     Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA Efstathia I. Paramera,     Harokopio University, Athens, Greece Rufino Perez,     United States Agency for International Development, Washington, DC., USA Rocio Pérez-Masiá,     Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology, Paterna (Valencia), Spain Martin Schaefer,     Buhler AG, Switzerland Milind Singh,     Orbis Biosciences, Kansas City, Kansas, USA Jakob Sloth,     GEA Niro, GEA Process Engineering A/S, Soeborg, Denmark Robert Sobel FONA International, Geneva, Illinois, USA Ronald T. Dodge Company, Dayton, Ohio, USA Emiel Speets,     Vesuvius GmbH, Foseco Foundry Division, Borken, Germany Chin-Ping Su,     FONA International, Geneva, Illinois, USA Karim Tallua,     Encapsula NanoSciences, Brentwood, Tennessee, USA Qiong Tang,     Advanced BioNutrition Corporation, Columbia, Maryland, USA Courtney S. Thompson,     Encapsula NanoSciences, Brentwood, Tennessee, USA Rohan V....


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.