Zinoviev / Zhang | Introduction to Quantitative Social Science with Python | Buch | 978-1-032-35659-4 | sack.de

Buch, Englisch, 356 Seiten, Format (B × H): 155 mm x 229 mm, Gewicht: 540 g

Reihe: Chapman & Hall/CRC The Python Series

Zinoviev / Zhang

Introduction to Quantitative Social Science with Python


1. Auflage 2024
ISBN: 978-1-032-35659-4
Verlag: Taylor & Francis Ltd

Buch, Englisch, 356 Seiten, Format (B × H): 155 mm x 229 mm, Gewicht: 540 g

Reihe: Chapman & Hall/CRC The Python Series

ISBN: 978-1-032-35659-4
Verlag: Taylor & Francis Ltd


Departing from traditional methodologies of teaching data analysis, this book presents a dual-track learning experience, with both Executive and Technical Tracks, designed to accommodate readers with various learning goals or skill levels. Through integrated content, readers can explore fundamental concepts in data analysis while gaining hands-on experience with Python programming, ensuring a holistic understanding of theory and practical application in Python.

Emphasizing the practical relevance of data analysis in today's world, the book equips readers with essential skills for success in the field. By advocating for the use of Python, an open-source and versatile programming language, we break down financial barriers and empower a diverse range of learners to access the tools they need to excel.

Whether you're a novice seeking to grasp the foundational concepts of data analysis or a seasoned professional looking to enhance your programming skills, this book offers a comprehensive and accessible guide to mastering the art and science of data analysis in social science research.

Key Features:

- Dual-track learning: Offers both Executive and Technical Tracks, catering to readers with varying levels of conceptual and technical proficiency in data analysis.

- Includes comprehensive quantitative methodologies for quantitative social science studies.

- Seamless integration: Interconnects key concepts between tracks, ensuring a smooth transition from theory to practical implementation for a comprehensive learning experience.

- Emphasis on Python: Focuses on Python programming language, leveraging its accessibility, versatility, and extensive online support to equip readers with valuable data analysis skills applicable across diverse domains.

Zinoviev / Zhang Introduction to Quantitative Social Science with Python jetzt bestellen!

Zielgruppe


Academic

Weitere Infos & Material


Part 1: “Executive Track”  1. Introduction to Data Analysis in Social Science 2. Data Collection and Cleaning 3. Descriptive and Exploratory Analysis 4. Causality and Hypothesis Testing 5. Linear Regression Analysis 6. Classification 7. Complex Network Analysis 8. Text As Data  Part 2: “Technical Track”  9. Python Programming Fundamentals 10. Data Collection and Cleaning 11. Condition Checking and Descriptive and Exploratory Analysis 12. Loops and Hypothesis Testing 13. User-Defined Functions and Regression Analysis 14. Generators and Classification 15. More Generators and Network Analysis 16. Sets. Text as Data Conclusion A. Solutions to Select Exercises Bibliography


Weiqi Zhang is an Associate Professor at Suffolk University. He teaches courses on political science and data analytics, and he is passionate about bridging social sciences and data science.

Dmitry Zinoviev is a Professor of Computer Science at Suffolk University. His academic interests include computer modeling and simulation, complex networks, and the integration of computational methods into traditionally non-quantitative fields such as the humanities and social sciences.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.