Ablowitz | Nonlinear Dispersive Waves | Buch | 978-1-107-66410-4 | sack.de

Buch, Englisch, Band 47, 362 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 591 g

Reihe: Cambridge Texts in Applied Mathematics

Ablowitz

Nonlinear Dispersive Waves


Erscheinungsjahr 2011
ISBN: 978-1-107-66410-4
Verlag: Cambridge University Press

Buch, Englisch, Band 47, 362 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 591 g

Reihe: Cambridge Texts in Applied Mathematics

ISBN: 978-1-107-66410-4
Verlag: Cambridge University Press


The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science.

Ablowitz Nonlinear Dispersive Waves jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface; Acknowledgements; Part I. Fundamentals and Basic Applications: 1. Introduction; 2. Linear and nonlinear wave equations; 3. Asymptotic analysis of wave equations; 4. Perturbation analysis; 5. Water waves and KdV type equations; 6. Nonlinear Schrödinger models and water waves; 7. Nonlinear Schrödinger models in nonlinear optics; Part II. Integrability and Solitons: 8. Solitons and integrable equations; 9. Inverse scattering transform for the KdV equation; Part III. Novel Applications of Nonlinear Waves: 10. Communications; 11. Mode-locked lasers; 12. Nonlinear photonic lattices; References; Index.


Ablowitz, Mark J.
Mark J. Ablowitz is Professor of Applied Mathematics at the University of Colorado, Boulder.

Mark J. Ablowitz is Professor of Applied Mathematics at the University of Colorado, Boulder.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.