Buch, Englisch, 230 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g
Robustness and Monotonic Convergence for Interval Systems
Buch, Englisch, 230 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g
Reihe: Communications and Control Engineering
ISBN: 978-1-84996-658-0
Verlag: Springer
This monograph studies the design of robust, monotonically-convergent it- ative learning controllers for discrete-time systems. Iterative learning control (ILC) is well-recognized as an e?cient method that o?ers signi?cant p- formance improvement for systems that operate in an iterative or repetitive fashion (e. g., robot arms in manufacturing or batch processes in an industrial setting). Though the fundamentals of ILC design have been well-addressed in the literature, two key problems have been the subject of continuing - search activity. First, many ILC design strategies assume nominal knowledge of the system to be controlled. Only recently has a comprehensive approach to robust ILC analysis and design been established to handle the situation where the plant model is uncertain. Second, it is well-known that many ILC algorithms do not produce monotonic convergence, though in applications monotonic convergencecan be essential. This monograph addresses these two keyproblems by providingauni?ed analysisanddesignframeworkforrobust, monotonically-convergent ILC. The particular approach used throughout is to consider ILC design in the iteration domain, rather than in the time domain. Using a lifting technique, the two-dimensionalILC system, whichhas dynamics in both the time and - erationdomains,istransformedintoaone-dimensionalsystem,withdynamics only in the iteration domain. The so-called super-vector framework resulting from this transformation is used to analyze both robustness and monotonic convergence for typical uncertainty models, including parametric interval - certainties, frequency-like uncertainty in the iteration domain, and iterati- domain stochastic uncertainty.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Technische Wissenschaften Technik Allgemein Mess- und Automatisierungstechnik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Überwachungstechnik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Iterative Learning Control Overview.- An Overview of the ILC Literature.- The Super-vector Approach.- Robust Interval Iterative Learning Control.- Robust Interval Iterative Learning Control: Analysis.- Schur Stability Radius of Interval Iterative Learning Control.- Iterative Learning Control Design Based on Interval Model Conversion.- Iteration-domain Robustness.- Robust Iterative Learning Control: H? Approach.- Robust Iterative Learning Control: Stochastic Approaches.- Conclusions.




