Amann / Bandle / Chipot | Progress in Partial Differential Equations | Buch | 978-0-582-31709-3 | sack.de

Buch, Englisch, Band 383, 224 Seiten, Format (B × H): 165 mm x 248 mm, Gewicht: 336 g

Reihe: Chapman & Hall/CRC Research Notes in Mathematics Series

Amann / Bandle / Chipot

Progress in Partial Differential Equations


1. Auflage 1998
ISBN: 978-0-582-31709-3
Verlag: Chapman and Hall/CRC

Buch, Englisch, Band 383, 224 Seiten, Format (B × H): 165 mm x 248 mm, Gewicht: 336 g

Reihe: Chapman & Hall/CRC Research Notes in Mathematics Series

ISBN: 978-0-582-31709-3
Verlag: Chapman and Hall/CRC


The numerous applications of partial differential equations to problems in physics, mechanics, and engineering keep the subject an extremely active and vital area of research. With the number of researchers working in the field, advances-large and small-come frequently. Therefore, it is essential that mathematicians working in partial differential equations and applied mathematics keep abreast of new developments. Progress in Partial Differential Equations, presents some of the latest research in this important field. Both volumes contain the lectures and papers of top international researchers contributed at the Third European Conference on Elliptic and Parabolic Problems. In addition to the general theory of elliptic and parabolic problems, the topics covered at the conference include: applications free boundary problems fluid mechanics ogeneral evolution problems calculus of variations ohomogenization omodeling numerical analysis.The research notes in these volumes offer a valuable update on the state-of-the-art in this important field of mathematics.

Amann / Bandle / Chipot Progress in Partial Differential Equations jetzt bestellen!

Zielgruppe


Mathematicians working in partial differential equations
Applied mathematicians
Mathematical physicists

Weitere Infos & Material


of Volume 2 On Solution Existence for Elastoplastic Plates with Cracks, A.M. Khludnev and J. Sokolowski The Boundary Trace of Positive Solutions of Semilinear Elliptic Equations, M. Marcus and L. Veron Blow Up of Critical and Subcritical Norms in Semilinear Heat Equations, J. Matos Periodic Phases in Second Order Materials and Higher Order Model Equations, V.J. Mizel, L.A. Peletier, and W. C. Troy On the Interior Regularity of Weak Solutions to Nonlinear Parabolic Systems in Two Spatial Dimensions, J. Naumann Some Remarks on Singular Degenerate Parabolic Equations including the p-Laplace Diffusion Equation, M. Ohnuma A Generalization of the Extended Fisher-Kolmogorov Equation with an Application to Pulse Propagation Along Optical Fibers, L.A. Peletier, A.I. Rotariu-Bruma and W.C. Troy Global Solutions in Parabolic Blow-Up Problems with Perturbations, P. Quittner Large-Time Behavior of Solutions to Phase Field Equations with Constraints Under Nonlinear Dynamic Boundary Conditions, N. Sato and T. Aiki Asymptotic Stability for Evolution Systems Associated with Phase Transition, K. Shirakawa, A. Ito, N. Yamazaki and N. Kenmochi Free Boundary Problems for Second Order Parabolic Equations, V.A. Solonnikov Some Results on Blow-Up for Nonlocal Reaction-Diffusion Equations, P. Souplet Strictly Convex Curves, Convex Hulls, and Surface of Positive Gauss Curvature, J. Spruck Global Bifurcations Results for Noncompact Operators on Unbounded Domains, N.M. Stavrakakis Multidimensional Traveling Waves in the Bistable Case, V.A. Volpert and A.I. Volpert Boundary Stabilization of the Equation of Kirchhoff Plates, W. Ali Existence Results in Lp -Lq spaces for Second Order Parabolic Equations with Inhomogeneous Dirichlet Boundary Conditions, P. Weidemaier Remarks to the Blow-Up profile of a Degenerate Parabolic Equation, M. Wiegner



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.