Arnold | Noisy Optimization With Evolution Strategies | Buch | 978-1-4613-5397-3 | sack.de

Buch, Englisch, Band 8, 158 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 271 g

Reihe: Genetic Algorithms and Evolutionary Computation

Arnold

Noisy Optimization With Evolution Strategies


Softcover Nachdruck of the original 1. Auflage 2002
ISBN: 978-1-4613-5397-3
Verlag: Springer US

Buch, Englisch, Band 8, 158 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 271 g

Reihe: Genetic Algorithms and Evolutionary Computation

ISBN: 978-1-4613-5397-3
Verlag: Springer US


Noise is a common factor in most real-world optimization problems. Sources of noise can include physical measurement limitations, stochastic simulation models, incomplete sampling of large spaces, and human-computer interaction. Evolutionary algorithms are general, nature-inspired heuristics for numerical search and optimization that are frequently observed to be particularly robust with regard to the effects of noise.

Noisy Optimization with Evolution Strategies contributes to the understanding of evolutionary optimization in the presence of noise by investigating the performance of evolution strategies, a type of evolutionary algorithm frequently employed for solving real-valued optimization problems. By considering simple noisy environments, results are obtained that describe how the performance of the strategies scales with both parameters of the problem and of the strategies considered. Such scaling laws allow for comparisons of different strategy variants, for tuning evolution strategies for maximum performance, and they offer insights and an understanding of the behavior of the strategies that go beyond what can be learned from mere experimentation.

This first comprehensive work on noisy optimization with evolution strategies investigates the effects of systematic fitness overvaluation, the benefits of distributed populations, and the potential of genetic repair for optimization in the presence of noise. The relative robustness of evolution strategies is confirmed in a comparison with other direct search algorithms.

Noisy Optimization with Evolution Strategies is an invaluable resource for researchers and practitioners of evolutionary algorithms.

Arnold Noisy Optimization With Evolution Strategies jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction.- 2. Preliminaries.- 1 The Basic $$
({\mu \mathord{\left/
{\vphantom {\mu {\rho \mathop + \limits_, \lambda }}} \right.
\kern-\nulldelimiterspace} {\rho \mathop + \limits_, \lambda }}) - ES
$$.- 2 Mutation Strength Adaptation.- 3 Fitness Environments.- 4 Measuring Performance.- 5 Modeling the Sphere.- 3. The (1 + 1)-ES: Overvaluation.- 1 Overvaluation.- 2 Performance.- 3 Discussion.- 4. The (?,?)-ES: Distributed Populations.- 1 Modeling the Population.- 2 The Infinite Noise Limit.- 3 Finite Noise Strength.- 4 The Spherical Environment.- 5. The (?/?,?)-ES: Genetic Repair.- 1 Simple Performance Analysis.- 2 Improving the Accuracy.- 3 Cumulative Mutation Strength Adaptation.- 6. Comparing Approaches To Noisy Optimization.- 1 The Competitors.- 2 The Competition.- 7. Conclusions.- Appendices.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.