Barba Maggi | Multiscale Forecasting Models | Buch | 978-3-319-94991-8 | www.sack.de

Buch, Englisch, 124 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 395 g

Barba Maggi

Multiscale Forecasting Models


1. Auflage 2018
ISBN: 978-3-319-94991-8
Verlag: Springer International Publishing

Buch, Englisch, 124 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 395 g

ISBN: 978-3-319-94991-8
Verlag: Springer International Publishing


This book presents two new decomposition methods to decompose a time series in intrinsic components of low and high frequencies. The methods are based on Singular Value Decomposition (SVD) of a Hankel matrix (HSVD). The proposed decomposition is used to improve the accuracy of linear and nonlinear auto-regressive models.

Linear Auto-regressive models (AR, ARMA and ARIMA) and Auto-regressive Neural Networks (ANNs) have been found insufficient because of the highly complicated nature of some time series. Hybrid models are a recent solution to deal with non-stationary processes which combine pre-processing techniques with conventional forecasters, some pre-processing techniques broadly implemented are Singular Spectrum Analysis (SSA) and Stationary Wavelet Transform (SWT). Although the flexibility of SSA and SWT allows their usage in a wide range of forecast problems, there is a lack of standard methods to select their parameters.

The proposed decomposition HSVD and Multilevel SVD are described in detail through time series coming from the transport and fishery sectors. Further, for comparison purposes, it is evaluated the forecast accuracy reached by SSA and SWT, both jointly with AR-based models and ANNs.


Barba Maggi Multiscale Forecasting Models jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Dedication.- Foreword.- Preface.- Acknowledgement.- List of Tables.- List of Figures.- Acronyms.- 1. Times Series Analysis.- 2. Forecasting based on Hankel Singular Value Decomposition.- 3.Multi-step ahead forecasting.- 4. Multilevel Singular Value Decomposition.


Lida Mercedes Barba Maggi earned a PhD degree in Informatics Engineering from the Pontificia Universidad Católica de Valparaíso, Chile, in 2017. She is currently affiliated with the Universidad Nacional de Chimborazo in Ecuador. Her research interests include Analysis of time series, Forecast and estimate based on mathematical and statistical models, Forecast and estimate based on artificial intelligence, and Optimization Algorithms.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.