Buch, Englisch, 366 Seiten, Print PDF, Format (B × H): 161 mm x 240 mm, Gewicht: 716 g
Buch, Englisch, 366 Seiten, Print PDF, Format (B × H): 161 mm x 240 mm, Gewicht: 716 g
ISBN: 978-0-19-877312-2
Verlag: OUP Oxford
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
Weitere Infos & Material
- Chapter 1: Decision Theory and Bayesian Inference
- Chapter 2: Bayesian Statistics and Linear Regression
- Chapter 3: Methods of Numerical Integration
- Chapter 4: Prior Densities for the Regression Model
- Chapter 5: Dynamic Regression Models
- Chapter 6: Bayesian Unit Roots
- Chapter 7: Heteroskedasticity and ARCH
- Chapter 8: Nonlinear Tome Series Models
- Chapter 9: Systems of Equations
- Appendix A: Probability Distributions
- Appendix B: Generating Random Numbers




