Bernardo / Dawid / Berger | BAYESIAN STATISTICS 7 BBSS C | Buch | 978-0-19-852615-5 | www.sack.de

Buch, Englisch, 764 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1300 g

Bernardo / Dawid / Berger

BAYESIAN STATISTICS 7 BBSS C


Erscheinungsjahr 2003
ISBN: 978-0-19-852615-5
Verlag: ACADEMIC

Buch, Englisch, 764 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1300 g

ISBN: 978-0-19-852615-5
Verlag: ACADEMIC


The Valencia International Meetings on Bayesian Statistics, held every four years, provide the main forum for researchers in the area of Bayesian Statistics to come together to present and discuss frontier developments in the field. The resulting Proceedings provide a definitive, up-to-date overview encompassing a wide range of theoretical and applied research. This seventh Proceedings containing 23 invited articles and 31 contributed papers is no exception, and will be an indispensable reference to all statisticians.

Bernardo / Dawid / Berger BAYESIAN STATISTICS 7 BBSS C jetzt bestellen!

Weitere Infos & Material


- Arellano-Valle, R. B., Iglesias, P. L. and Vidal I.: Bayesian Inference for Elliptical Linear Models: Conjugate Analysis and Model Comparison

- Blei, D. M., Jordan, M. I. and Ng, A. Y.: Hierarchical Bayesian Models for Applications in Information Retrieval

- Carlin, B. P. and Banerjee, S.: Hierarchical Multivariate CAR Models for Spatio- Temporally Correlated Survival Data

- Chib, S.: On Inferring Effects of Binary Treatments with Unobserved Confounders

- Chipman, H. A., George, E. I. and McCulloch, R. E.: Bayesian Treed Generalized Linear Models

- Davy, M. and Godsill, S. J.: Bayesian Harmonic Models for Musical Signal Analysis

- Dobra, A., Fienberg, S. E. and Trottini, M.: Assessing the Risk of Disclosure of Confidential Categorical Data.

- Genovese, C. and Wasserman, L: Bayesian and Frequentist Multiple Testing. 145

- Gutiérrez-Peña, E. and Nieto-Barajas, L. E.: Nonparametric Inference for Mixed Poisson Processes

- Higdon, D., Lee, H. and Holloman, C.: Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems

- Johnson, V. E., Graves, T. L., Hamada, M. S. and Shane, C.: Reese A Hierarchical Model for Estimating the Reliability of Complex Systems

- Lauritzen, S. L.: Rasch Models with Exchangeable Rows and Columns

- Linde, A. Van Der and Osius, G.: Discrimination Based on an Odds Ratio Parameterization

- Liu, J. S., Zhang, J. L., Palumbo, M. J. and Charles, E.: Lawrence Bayesian Clustering with Variable and Transformation Selections

- Mengersen, K. L. and Robert, C. P.: Iid Sampling using Self-Avoiding Population Monte Carlo: The Pinball Sampler

- Newton, M. A., Yang H., Gorman, P., Tomlinson, I. and Roylance, R.: A Statistical Approach to Modeling Genomic Aberrations in Cancer Cells

- Papaspiliopoulos, O., Roberts, G. O. and Sköld, M.: Non-Centered Parameterisations for Hierarchical Models and Data Augmentation

- Peña, D., Rodríguez, J. and Tiao, G. C.: Identifying Mixtures of Regression Equations by the SAR procedure

- Quintana, J. M., Lourdes V., Aguilar, O. and Liu, J.: Global Gambling

- Salinetti, G.: New Tools for Consistency in Bayesian Nonparametrics

- Schervish, M. J., Seidenfeld T. and Kadane, J. B.: Measures of Incoherence: How not to Gamble if you Must

- Wolpert, R. L., Ickstadt, K. and Hansen, M. B.: A Nonparametric Bayesian Approach to Inverse Problems

- Zohar, R. and Geiger, D.: A Novel Framework for Tracking Groups of Objects

- II. CONTRIBUTED PAPERS

- Ausín, M. C., Lillo, R. E., Ruggeri, F. and Wiper, M. P.: Bayesian Modeling of Hospital Bed Occupancy Times using a Mixed Generalized Erlang Distribution

- Beal, M. J. and Ghahramani, Z.: The Variational Bayesian EM Algorithm for Incomplete Data: With Application to Scoring Graphical Model Structures

- Bernardo, J. M. and Juárez, M. A.: Intrinsic Estimation

- Choy S. T. B., Chan J. S. K. and YamH. K.: Robust Analysis of Salamander Data, Generalized Linear Model with Random Effects

- Daneshkhah, A. and Smith, Jim Q.: A Relationship Between Randomised Manipulation and Parameter Independence

- Dethlefsen, C.: Markov Random Field Extensions using State Space Models

- Erosheva, E. A.: Bayesian Estimation of the Grade of Membership Model

- Esteves, L. G., Wechsler, S., Iglesias, P. L. and Pereira, A. L.: A Variant Version of the Pólya-Eggenberger Urn Model

- Ferreira, A. R., West, M., Lee, H. K. H., Higdon, D. and Bi, Z.: Multi-scale Modelling of 1-D Permeability Fields

- Fraser, D. A. S., Reid, N., Wong, A. and Yi, G. Y.: Direct Bayes for Interest Parameters

- Garside, L. M. and Wilkinson, D. J.: Dynamic Lattice-Markov Spatio-Temporal Models for Environmental Data

- Gebousk´y, P., Kárn´y, M. and Quinn, A.: Lymphoscintigraphy of Upper Limbs: A Bayesian Framework

- Girón, F. J., Martínez, M. L., Moreno, E. and Torres, F.: Bayesian Analysis of Matched Pairs in the Presence of Covariates

- Jamieson, L. E. and Brooks, S. P.: State Space Models for Density Dependence in Population Ecology

- Lavine, M.: A Marginal Ergodic Theorem

- Lefebvre, T., Gadeyne, K., Bruyninckx, H. and Schutter, J. D.: Exact Bayesian Inference for a Class of Nonlinear Systems with Application to Robotic Assembly

- Leucari, V. and Consonni, G.: Compatible Priors for Causal Bayesian Networks

- Mertens, B. J. A.: On the Application of Logistic Regression Modeling in Microarray Studies

- Neal, R. M.: Dens ity Modeling and Clustering Using Dirichlet Diffusion Trees

- Pettit, L. I. and Sugden, R. A.: Outl ier Robust Estimation of a Finite Population Total

- Polson, N. G. and Stroud, J. R.: Bayesian Inference f or Derivative Prices

- Rasmussen, C. E.: Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals

- Rodríguez, A., Álvarez, G. and Sansó, B.: Objective Bayesian Comparison of Laplace Samples from Geophysical Data

- Scott, S. L. and Smyth, P.: The Markov Modulated Poisson Process and Markov Poisson Cascade with Applications to Web Traffic Modeling

- Smith, E. L. and Walshaw, D.: Modelling Bivariate Extremes in a Region

- Vehtari, and Lampinen, J.: Expected Utility Estimation via Cross-Validation

- Virto, M., Martín, J., Ríos-Insua, D. and Moreno-Díaz, A.: A Method for Sequential Optimization in Bayesian Analysis

- Wakefield, J. C., Zhou, C. and Self, S. G.: Modelling Gene Expression Data over Time: Curve Clustering with Informative Prior Distributions

- West, M: Bayesian Factor Regression Models in the Large p, Small n Paradigm

- Zheng, P. and Marriott, J. M.: A Bayesian Analysis of Smooth Transitions in Trend

- Tamminen, T. and Lampinen. J: Bayesian Object Matching with Hierarchical Priors and Markov Chain Monte Carlo


Professor José M. Bernardo

Professor of Statistics, Universidad de Valencia, Spain; A. Philip Dawid
Professor of Statistics, University College London, UK

AWARDS:

2002 DeGroot Prize for a Published Book in Statistical Science (Cowell et al.)
2001 Royal Statistical Society: Guy Medal in Silver
1978 Royal Statistical Society: Guy Medal in Bronze
1977 G. W. Snedecor Award for Best Publication in Biometry

; David Heckerman
Senior Researcher, Microsoft
AAAI Fellow, 2001
Association for Computing Machinery Doctoral Dissertation Award, 1991
; Mike West
The Arts & Sciences Professor of Statistics & Decision Sciences
Institute of Statistics and Decision Sciences, Duke University
; James O. Berger
Professor of Statistics, Duke University; Professor M.J. Bayarri

Professor of Statistics, Universidad de Valencia, Spain; Professor Adrian F.M. Smith
Principal, Queen Mary University of London



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.