Bezdek / Langi | Volumetric Discrete Geometry | Buch | 978-0-367-22375-5 | sack.de

Buch, Englisch, 306 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 628 g

Reihe: Discrete Mathematics and Its Applications

Bezdek / Langi

Volumetric Discrete Geometry


1. Auflage 2019
ISBN: 978-0-367-22375-5
Verlag: CRC Press

Buch, Englisch, 306 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 628 g

Reihe: Discrete Mathematics and Its Applications

ISBN: 978-0-367-22375-5
Verlag: CRC Press


Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume, introduces problems related to it, and presents methods to apply it to other geometric problems.

Part I of the text consists of survey chapters of selected topics on volume and is suitable for advanced undergraduate students. Part II has chapters of selected proofs of theorems stated in Part I and is oriented for graduate level students wishing to learn about the latest research on the topic. Chapters can be studied independently from each other.

- Provides a list of 30 open problems to promote research

- Features more than 60 research exercises

- Ideally suited for researchers and students of combinatorics, geometry and discrete mathematics

Bezdek / Langi Volumetric Discrete Geometry jetzt bestellen!

Weitere Infos & Material


I Selected Topics

Volumetric Properties of (m, d)-scribed Polytopes

Volume of the Convex Hull of a Pair of Convex Bodies

The Kneser-Poulsen conjecture revisited

Volumetric Bounds for Contact Numbers

More on Volumetric Properties of Separable Packings



II Selected Proofs

Proofs on Volume Inequalities for Convex Polytopes

Proofs on the Volume of the Convex Hull of a Pair of Convex Bodies

Proofs on the Kneser-Poulsen conjecture

Proofs on Volumetric Bounds for Contact Numbers

More Proofs on Volumetric Properties of Separable Packings

Open Problems: An Overview


Károly Bezdek is a Professor and Director - Centre for Computational & Discrete Geometry, Pure Mathematics at University of Calgary. He received his Ph.D. in mathematics at the ELTE University of Budapest. He holds a first-tier Canada chair, which is the highest level of research funding awarded by the government of Canada.

Zsolt Lángi is an associate professor at Budapest University of Technology, and a senior research fellow at the Morphodynamics Research Group of the Hungarian Academy of Sciences. He received his Ph.D. in mathematics at the ELTE University of Budapest, and also at the University of Calgary. He is particularly interested in geometric extremum problems, and equilibrium points of convex bodies.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.