Bhattarai / Ali / Rau | Data Engineering in Medical Imaging | Buch | 978-3-031-44991-8 | sack.de

Buch, Englisch, 123 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 219 g

Reihe: Lecture Notes in Computer Science

Bhattarai / Ali / Rau

Data Engineering in Medical Imaging

First MICCAI Workshop, DEMI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings
1. Auflage 2023
ISBN: 978-3-031-44991-8
Verlag: Springer Nature Switzerland

First MICCAI Workshop, DEMI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings

Buch, Englisch, 123 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 219 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-44991-8
Verlag: Springer Nature Switzerland


Volume LNCS 14414 constitutes the refereed proceedings of the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023, which was held in Vancouver, Canada in October 2023.
The DEMI 2023 proceedings contain 11 high-quality papers of 9 to 15 pages pre-selected through a rigorous peer review process (with an average of three reviews per paper). All submissions were peer-reviewed through a double-blind process by at least three members of the scientific review committee, comprising 16 experts in the field of medical imaging. The accepted manuscripts cover various medical image analysis methods and applications.

Bhattarai / Ali / Rau Data Engineering in Medical Imaging jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Weakly Supervised Medical Image Segmentation through Dense Combinations of Dense Pseudo-Labels.- Whole Slide Multiple Instance Learning for Predicting Axillary Lymph Node Metastasis.- A Client-server Deep Federated Learning for Cross-domain Surgical Image Segmentation.- Pre-training with simulated ultrasound images for breast mass segmentation and classification.- Efficient Large Scale Medical Image Dataset Preparation for Machine Learning Applications.- A Self-supervised Approach for Detecting the Edges of Haustral Folds in Colonoscopy Video.- Procedurally Generated Colonoscopy and Laparoscopy Data For Improved Model Training Performance.- Improving Medical Image Classification in Noisy Labels Using Only Self-supervised Pretraining.- A Study on Using Transformer Encoding Techniques to Optimize Data-driven Volume-to-Surface Registration for Minimally Invasive Liver Interventions.- Vision Transformer-based Self-Supervised Learning for Ulcerative Colitis Grading in Colonoscopy.- Task-guided Domain Gap Reduction for Monocular Depth Prediction in Endoscopy.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.