Buch, Englisch, 458 Seiten, Format (B × H): 167 mm x 242 mm, Gewicht: 1840 g
Buch, Englisch, 458 Seiten, Format (B × H): 167 mm x 242 mm, Gewicht: 1840 g
ISBN: 978-1-84628-094-8
Verlag: Springer
is a collection of contributions from the world’s leading experts in a fast-emerging branch of control engineering and operations research. The book will be bought by university researchers and lecturers along with graduate students in control engineering and operational research.
Zielgruppe
Researchers and academics in control engineering and operations research, postgraduate students in control engineering and operations research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Mess- und Automatisierungstechnik
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
- Mathematik | Informatik Mathematik Operations Research
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
Weitere Infos & Material
Chance-Constrained and Stochastic Optimization.- Scenario Approximations of Chance Constraints.- Optimization Models with Probabilistic Constraints.- Theoretical Framework for Comparing Several Stochastic Optimization Approaches.- Optimization of Risk Measures.- Robust Optimization and Random Sampling.- Sampled Convex Programs and Probabilistically Robust Design.- Tetris: A Study of Randomized Constraint Sampling.- Near Optimal Solutions to Least-Squares Problems with Stochastic Uncertainty.- The Randomized Ellipsoid Algorithm for Constrained Robust Least Squares Problems.- Randomized Algorithms for Semi-Infinite Programming Problems.- Probabilistic Methods in Identification and Control.- A Learning Theory Approach to System Identification and Stochastic Adaptive Control.- Probabilistic Design of a Robust Controller Using a Parameter-Dependent Lyapunov Function.- Probabilistic Robust Controller Design: Probable Near Minimax Value and Randomized Algorithms.- Sampling Random Transfer Functions.- Nonlinear Systems Stability via Random and Quasi-Random Methods.- Probabilistic Control of Nonlinear Uncertain Systems.- Fast Randomized Algorithms for Probabilistic Robustness Analysis.




