Carneiro / Lu / Mateus | Deep Learning and Data Labeling for Medical Applications | Buch | 978-3-319-46975-1 | sack.de

Buch, Englisch, 280 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 4511 g

Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics

Carneiro / Lu / Mateus

Deep Learning and Data Labeling for Medical Applications

First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings
1. Auflage 2016
ISBN: 978-3-319-46975-1
Verlag: Springer International Publishing

First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings

Buch, Englisch, 280 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 4511 g

Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics

ISBN: 978-3-319-46975-1
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.

Carneiro / Lu / Mateus Deep Learning and Data Labeling for Medical Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Active learning.- Semi-supervised learning.- Reinforcement learning.- Domain adaptation and transfer learning.- Crowd-sourcing annotations and fusion of labels from different sources.- Data augmentation.- Modelling of label uncertainty.- Visualization and human-computer interaction.- Image description.- Medical imaging-based diagnosis.- Medical signal-based diagnosis.- Medical image reconstruction and model selection using deep learning techniques.- Meta-heuristic techniques for fine-tuning.- Parameter in deep learning-based architectures.- Applications based on deep learning techniques.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.