Buch, Englisch, 440 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g
Buch, Englisch, 440 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g
Reihe: Advanced Information and Knowledge Processing
ISBN: 978-1-4471-2581-5
Verlag: Springer
Scientific Data Analysis using Jython Scripting and Java presents practical approaches for data analysis using Java scripting based on Jython, a Java implementation of the Python language. The chapters essentially cover all aspects of data analysis, from arrays and histograms to clustering analysis, curve fitting, metadata and neural networks. A comprehensive coverage of data visualisation tools implemented in Java is also included.
Written by the primary developer of the jHepWork data-analysis framework, the book provides a reliable and complete reference source laying the foundation for data-analysis applications using Java scripting. More than 250 code snippets (of around 10-20 lines each) written in Jython and Java, plus several real-life examples help the reader develop a genuine feeling for data analysis techniques and their programming implementation.
This is the first data-analysis and data-mining book which is completely based on the Jython language, and opens doors to scripting using a fully multi-platform and multi-threaded approach. Graduate students and researchers will benefit from the information presented in this book.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
Weitere Infos & Material
Jython, Java and jHepWork.- to Jython.- Mathematical Functions.- One-dimensional Data.- Two-dimensional Data.- Multi-dimensional Data.- Arrays, Matrices and Linear Algebra.- Histograms.- Random Numbers and Statistical Samples.- Graphical Canvases.- Input and Output.- Miscellaneous Analysis Issues Using jHepWork.- Data Clustering.- Linear Regression and Curve Fitting.- Neural Networks.- Steps in Data Analysis.- Real-life Examples.




