Buch, Englisch, 200 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 330 g
Buch, Englisch, 200 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 330 g
ISBN: 978-1-4419-2148-2
Verlag: Springer
This book covers the fundamentals of continuum mechanics, the integral formulation methods of continuum problems, the basic concepts of finite element methods, and the methodologies, formulations, procedures, and applications of various meshless methods. It also provides general and detailed procedures of meshless analysis on elastostatics, elastodynamics, non-local continuum mechanics and plasticity with a large number of numerical examples. Some basic and important mathematical methods are included in the Appendixes. For readers who want to gain knowledge through hands-on experience, the meshless programs for elastostatics and elastodynamics are provided on an included disc.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Technische Wissenschaften Verkehrstechnik | Transportgewerbe Luft- und Raumfahrttechnik, Luftverkehr
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Kontinuumsmechanik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Fertigungsindustrie Luftfahrtindustrie
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Technische Wissenschaften Verkehrstechnik | Transportgewerbe Fahrzeugtechnik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Werkstoffprüfung
Weitere Infos & Material
Introduction: Foundation of Physical Theories.- Atomic Scale Modeling and Computation.- PDE-based Continuum Modeling and Computation.- Fundamentals of Continuum Mechanics: Kinematics.- Balance Laws of Motion.- Constitutive Theory.- Thermo-Visco-Elastic Solid.- Integral Formulation of Continuum Problems: Introduction.- Weighted Residual Methods.- Variational Principle.- Basic Concepts of Finite Element Methods: Introduction.- Shape Functions.- Finite Element Formulation.- Numerical Integration.- An Overview of Meshless Methods: Approximation Functions.- Smooth particle hydrodynamics method (SPH) .- Reproducing kernel particle method (RKPM) .- Moving least squares approximation (EFG) .- Partition of unity methods (PU) .- Other meshless methods.- The common feature of the approximations.- Numerical Implementations.- Collocation method.- Galerkin method with quadrature integration scheme.- Nodal integration of Galerkin method.- Local boundary integral equation method and local Petrov-Galerkin method.- Imposition of essential boundary conditions.- Applications.- Procedures of Meshless Analysis: Construction of the Approximation.- Choice of Weight Functions.- Formulation of Meshless Analysis.- Evaluation of the Integral.- Treatment of Discontinuity.- Treatment of Mirror Symmetry.- H- and P- refinements.- Meshless Analysis of Elastostatics: Background Theories of Applications of Elastostatics.- Meshless Solution of Elastostatics.- Numerical Examples.- Meshless Analysis of Elastodynamics: Wave Propagation Problems and Structural Dynamics Problems.- Natural Frequencies and Modal Shapes.- Transient Analysis: Direct Integration Methods.- Meshless Solution of Elastodynamics.- Numerical Examples.- Meshless Analysis of Nonlocal Continua: .- Introduction to Nonlocal Theory.- The Framework of Nonlocal Theory.- Material Instability and Intrinsic Length.- Nonlocal Constitutive Relations.- Formulation of Nonlocal Meshless Method.- Numerical Examples.- Discussions.- Meshless Analysis of Plasticity: Formulation of Plasticity.- Return Mapping Algorithm.- J(2) Flow Theory.- Numerical Procedures.- Slow Crack Growth Problem.- Numerical Results.- Appendix A Vector and Tensor.- Appendix B Representations of Isotropic Scalar, Vector and Tensor Functions.- Appendix C Classification of Partial Differential Equations.- Appendix D Summary of the Procedures of Direct Integration Methods.- Appendix E User’s Manual of Meshless Programs.- Bibliography.- Index




