E-Book, Englisch, 416 Seiten
Reihe: Chapman & Hall/CRC Mathematical and Computational Imaging Sciences Series
Chung Statistical and Computational Methods in Brain Image Analysis
Erscheinungsjahr 2013
ISBN: 978-1-4398-3636-1
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 416 Seiten
Reihe: Chapman & Hall/CRC Mathematical and Computational Imaging Sciences Series
ISBN: 978-1-4398-3636-1
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. But none of the research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB® and case study data sets, Statistical and Computational Methods in Brain Image Analysis is the first book to explicitly explain how to perform statistical analysis on brain imaging data.
The book focuses on methodological issues in analyzing structural brain imaging modalities such as MRI and DTI. Real imaging applications and examples elucidate the concepts and methods. In addition, most of the brain imaging data sets and MATLAB codes are available on the author’s website.
By supplying the data and codes, this book enables researchers to start their statistical analyses immediately. Also suitable for graduate students, it provides an understanding of the various statistical and computational methodologies used in the field as well as important and technically challenging topics.
Zielgruppe
Researchers and graduate students in neuroscience, statistics, psychology, medical physics, and biomedical engineering; professionals who use noninvasive brain imaging modalities such as MRI, fMRI, PET, and DTI.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Bildgebende Verfahren, Nuklearmedizin, Strahlentherapie Radiologie, Bildgebende Verfahren
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
Weitere Infos & Material
Introduction to Brain and Medical Images
Image Volume Data
Surface Mesh Data
Landmark Data
Vector Data
Tensor and Curve Data
Brain Image Analysis Tools
Bernoulli Models for Binary Images
Sum of Bernoulli Distributions
Inference on Proportion of Activation
MATLAB Implementation
General Linear Models
General Linear Models
Voxel-Based Morphometry
Case Study: VBM in Corpus Callosum
Testing Interactions
Gaussian Kernel Smoothing
Kernel Smoothing
Gaussian Kernel Smoothing
Numerical Implementation
Case Study: Smoothing of DWI Stroke Lesions
Effective FWHM
Checking Gaussianness
Effect of Gaussianness on Kernel Smoothing
Random Fields Theory
Random Fields
Simulating Gaussian Fields
Statistical Inference on Fields
Expected Euler Characteristics
Anisotropic Kernel Smoothing
Anisotropic Gaussian Kernel Smoothing
Probabilistic Connectivity in DTI
Riemannian Metric Tensors
Chapman-Kolmogorov Equation
Cholesky Factorization of DTI
Experimental Results
Discussion
Multivariate General Linear Models
Multivariate Normal Distributions
Deformation-Based Morphometry (DBM)
Hotelling’s T2 Statistic
Multivariate General Linear Models
Case Study: Surface Deformation Analysis
Cortical Surface Analysis
Introduction
Modeling Surface Deformation
Surface Parameterization
Surface-Based Morphological Measures
Surface-Based Diffusion Smoothing
Statistical Inference on the Cortical Surface
Results
Discussion
Heat Kernel Smoothing on Surfaces
Introduction
Heat Kernel Smoothing
Numerical Implementation
Random Field Theory on Cortical Manifold
Case Study: Cortical Thickness Analysis
Discussion
Cosine Series Representation of 3D Curves
Introduction
Parameterization of 3D Curves
Numerical Implementation
Modeling a Family of Curves
Case Study: White Matter Fiber Tracts
Discussion
Weighted Spherical Harmonic Representation
Introduction
Spherical Coordinates
Spherical Harmonics
Weighted-SPHARM Package
Surface Registration
Encoding Surface Asymmetry
Case Study: Cortical Asymmetry Analysis
Discussion
Multivariate Surface Shape Analysis
Introduction
Surface Parameterization
Weighted Spherical Harmonic Representation
Gibbs Phenomenon in SPHARM
Surface Normalization
Image and Data Acquisition
Results
Discussion
Numerical Implementation
Laplace-Beltrami Eigenfunctions for Surface Data
Introduction
Heat Kernel Smoothing
Generalized Eigenvalue Problem
Numerical Implementation
Experimental Results
Case Study: Mandible Growth Modeling
Conclusion
Persistent Homology
Introduction
Rips Filtration
Heat Kernel Smoothing of Functional Signal
Min-max Diagram
Case Study: Cortical Thickness Analysis
Discussion
Sparse Networks
Introduction
Massive Univariate Methods
Why Are Sparse Models Needed?
Persistent Structures for Sparse Correlations
Persistent Structures for Sparse Likelihood
Case Study: Application to Persistent Homology
Sparse Partial Correlations
Summary
Sparse Shape Models
Introduction
Amygdala and Hippocampus Shape Models
Data Set
Sparse Shape Representation
Case Study: Subcortical Structure Modeling
Statistical Power
Power under Multiple Comparisons
Conclusion
Modeling Structural Brain Networks
Introduction
DTI Acquisition and Preprocessing
e-Neighbor Construction
Node Degrees
Connected Components
e-Filtration
Numerical Implementation
Discussion
Mixed Effects Models
Introduction
Mixed Effects Models
Bibliography
Index