Cohen | Advanced Topics in Computational Number Theory | Buch | 978-1-4612-6419-4 | www.sack.de

Buch, Englisch, 581 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 896 g

Reihe: Graduate Texts in Mathematics

Cohen

Advanced Topics in Computational Number Theory


Softcover Nachdruck of the original 1. Auflage 2000
ISBN: 978-1-4612-6419-4
Verlag: Springer

Buch, Englisch, 581 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 896 g

Reihe: Graduate Texts in Mathematics

ISBN: 978-1-4612-6419-4
Verlag: Springer


Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.

Cohen Advanced Topics in Computational Number Theory jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1. Fundamental Results and Algorithms in Dedekind Domains.- 1.1 Introduction.- 1.2 Finitely Generated Modules Over Dedekind Domains.- 1.3 Basic Algorithms in Dedekind Domains.- 1.4 The Hermite Normal Form Algorithm in Dedekind Domains.- 1.5 Applications of the HNF Algorithm.- 1.6 The Modular HNF Algorithm in Dedekind Domains.- 1.7 The Smith Normal Form Algorithm in Dedekind Domains.- 1.8 Exercises for Chapter 1.- 2. Basic Relative Number Field Algorithms.- 2.1 Compositum of Number Fields and Relative and Absolute Equations.- 2.2 Arithmetic of Relative Extensions.- 2.3 Representation and Operations on Ideals.- 2.4 The Relative Round 2 Algorithm and Related Algorithms.- 2.5 Relative and Absolute Representations.- 2.6 Relative Quadratic Extensions and Quadratic Forms.- 2.7 Exercises for Chapter 2.- 3. The Fundamental Theorems of Global Class Field Theory.- 3.1 Prologue: Hilbert Class Fields.- 3.2 Ray Class Groups.- 3.3 Congruence Subgroups: One Side of Class Field Theory.- 3.4 Abelian Extensions: The Other Side of Class Field Theory.- 3.5 Putting Both Sides Together: The Takagi Existence Theorem 154.- 3.6 Exercises for Chapter 3.- 4. Computational Class Field Theory.- 4.1 Algorithms on Finite Abelian groups.- 4.2 Computing the Structure of (?K/m)*.- 4.3 Computing Ray Class Groups.- 4.4 Computations in Class Field Theory.- 4.5 Exercises for Chapter 4.- 5. Computing Defining Polynomials Using Kummer Theory.- 5.1 General Strategy for Using Kummer Theory.- 5.2 Kummer Theory Using Hecke’s Theorem When ?? ? K.- 5.3 Kummer Theory Using Hecke When ?? ? K.- 5.4 Explicit Use of the Artin Map in Kummer Theory When ?n ? K.- 5.5 Explicit Use of the Artin Map When ?n ? K.- 5.6 Two Detailed Examples.- 5.7 Exercises for Chapter 5.- 6. Computing Defining PolynomialsUsing Analytic Methods.- 6.1 The Use of Stark Units and Stark’s Conjecture.- 6.2 Algorithms for Real Class Fields of Real Quadratic Fields.- 6.3 The Use of Complex Multiplication.- 6.4 Exercises for Chapter 6.- 7. Variations on Class and Unit Groups.- 7.1 Relative Class Groups.- 7.2 Relative Units and Regulators.- 7.3 Algorithms for Computing Relative Class and Unit Groups.- 7.4 Inverting Prime Ideals.- 7.5 Solving Norm Equations.- 7.6 Exercises for Chapter 7.- 8. Cubic Number Fields.- 8.1 General Binary Forms.- 8.2 Binary Cubic Forms and Cubic Number Fields.- 8.3 Algorithmic Characterization of the Set U.- 8.4 The Davenport-Heilbronn Theorem.- 8.5 Real Cubic Fields.- 8.6 Complex Cubic Fields.- 8.7 Implementation and Results.- 8.8 Exercises for Chapter 8.- 9. Number Field Table Constructions.- 9.1 Introduction.- 9.2 Using Class Field Theory.- 9.3 Using the Geometry of Numbers.- 9.4 Construction of Tables of Quartic Fields.- 9.5 Miscellaneous Methods (in Brief).- 9.6 Exercises for Chapter 9.- 10. Appendix A: Theoretical Results.- 10.1 Ramification Groups and Applications.- 10.2 Kummer Theory.- 10.3 Dirichlet Series with Functional Equation.- 10.4 Exercises for Chapter 10.- 11. Appendix B: Electronic Information.- 11.1 General Computer Algebra Systems.- 11.2 Semi-general Computer Algebra Systems.- 11.3 More Specialized Packages and Programs.- 11.4 Specific Packages for Curves.- 11.5 Databases and Servers.- 11.6 Mailing Lists, Websites, and Newsgroups.- 11.7 Packages Not Directly Related to Number Theory.- 12. Appendix C: Tables.- 12.1 Hilbert Class Fields of Quadratic Fields.- 12.2 Small Discriminants.- Index of Notation.- Index of Algorithms.- General Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.