Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server
Buch, Englisch, 257 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 4336 g
ISBN: 978-1-4842-3011-4
Verlag: Apress
It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable.
As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies—Python, Jupyter, Postgres—as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenesand Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms.
What You'll Learn
- Master interactive development using the Jupyter platform
- Run and build Docker containers from scratch and from publicly available open-source images
- Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type
- Deploy a multi-service data science application across a cloud-based system
Who This Book Is For
Data scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Betriebssysteme Linux Betriebssysteme, Open Source Betriebssysteme
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Software Engineering
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
Weitere Infos & Material
Chapter 1: Introduction.- Chapter 2: Docker.- Chapter 3: Interactive Programming.- Chapter 4: Docker Engine.- Chapter 5: The Dockerfile.- Chapter 6: Docker Hub.- Chapter 7: The Opinionated Jupyter Stacks.- Chapter 8: The Data Stores.- Chapter 9: Docker Compose.- Chapter 10: Interactive Development.