Cook | Docker for Data Science | Buch | 978-1-4842-3011-4 | sack.de

Buch, Englisch, 257 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 4336 g

Cook

Docker for Data Science

Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server
1. Auflage 2017
ISBN: 978-1-4842-3011-4
Verlag: Apress

Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server

Buch, Englisch, 257 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 4336 g

ISBN: 978-1-4842-3011-4
Verlag: Apress


Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller.
It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable. 

As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies—Python, Jupyter, Postgres—as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenesand Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms.
What  You'll Learn 
  • Master interactive development using the Jupyter platform
  • Run and build Docker containers from scratch and from publicly available open-source images
  • Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type
  • Deploy a multi-service data science application across a cloud-based system

Who This Book Is For
Data scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers
Cook Docker for Data Science jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1:  Introduction.- Chapter 2:  Docker.- Chapter 3: Interactive Programming.- Chapter 4: Docker Engine.- Chapter 5: The Dockerfile.- Chapter 6: Docker Hub.- Chapter 7: The Opinionated Jupyter Stacks.- Chapter 8: The Data Stores.- Chapter 9: Docker Compose.- Chapter 10: Interactive Development.


Joshua Cook is a mathematician. He writes code in Bash, C, and Python and has done pure and applied computational work in geo-spatial predictive modeling, quantum mechanics, semantic search, and artificial intelligence. He also has 10 years experience teaching mathematics at the secondary and post-secondary level. His research interests lie in high-performance computing, interactive computing, feature extraction, and reinforcement learning. He is always willing to discuss orthogonality or to explain why Fortran is the language of the future over a warm or cold beverage.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.