Buch, Englisch, 440 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 680 g
Buch, Englisch, 440 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 680 g
ISBN: 978-1-4419-4035-3
Verlag: Springer US
Signal Processing Methods for Music Transcription is the first book dedicated to uniting research related to signal processing algorithms and models for various aspects of music transcription such as pitch analysis, rhythm analysis, percussion transcription, source separation, instrument recognition, and music structure analysis. Following a clearly structured pattern, each chapter provides a comprehensive review of the existing methods for a certain subtopic while covering the most important state-of-the-art methods in detail. The concrete algorithms and formulas are clearly defined and can be easily implemented and tested. A number of approaches are covered, including, for example, statistical methods, perceptually-motivated methods, and unsupervised learning methods. The text is enhanced by a common reference and index.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Tonsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Spracherkennung, Sprachverarbeitung
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Geisteswissenschaften Sprachwissenschaft Computerlinguistik, Korpuslinguistik
Weitere Infos & Material
Foundations.- to Music Transcription.- An Introduction to Statistical Signal Processing and Spectrum Estimation.- Sparse Adaptive Representations for Musical Signals.- Rhythm and Timbre Analysis.- Beat Tracking and Musical Metre Analysis.- Unpitched Percussion Transcription.- Automatic Classification of Pitched Musical Instrument Sounds.- Multiple Fundamental Frequency Analysis.- Multiple Fundamental Frequency Estimation Based on Generative Models.- Auditory Model-Based Methods for Multiple Fundamental Frequency Estimation.- Unsupervised Learning Methods for Source Separation in Monaural Music Signals.- Entire Systems, Acoustic and Musicological Modelling.- Auditory Scene Analysis in Music Signals.- Music Scene Description.- Singing Transcription.