de Gosson | Symplectic Methods in Harmonic Analysis and in Mathematical Physics | Buch | 978-3-7643-9991-7 | sack.de

Buch, Englisch, Band 7, 338 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 610 g

Reihe: Pseudo-Differential Operators

de Gosson

Symplectic Methods in Harmonic Analysis and in Mathematical Physics


2011
ISBN: 978-3-7643-9991-7
Verlag: Springer

Buch, Englisch, Band 7, 338 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 610 g

Reihe: Pseudo-Differential Operators

ISBN: 978-3-7643-9991-7
Verlag: Springer


The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors.

This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic.

A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list ofreferences.

de Gosson Symplectic Methods in Harmonic Analysis and in Mathematical Physics jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Foreword.- Preface.- Prologue.- Part I: Symplectic Mechanics.- 1. Hamiltonian Mechanics in a Nutshell.- 2. The Symplectic Group.- 3. Free Symplectic Matrices.- 4. The Group of Hamiltonian Symplectomorphisms.- 5. Symplectic Capacities.- 6. Uncertainty Principles.- Part II: Harmonic Analysis in Symplectic Spaces.- 7. The Metaplectic Group.- 8. Heisenberg–Weyl and Grossmann–Royer Operators.- 9. Cross-ambiguity and Wigner Functions.- 10. The Weyl Correspondence.- 11. Coherent States and Anti-Wick Quantization.- 12. Hilbert–Schmidt and Trace Class Operators.- 13. Density Operator and Quantum States.- Part III: Pseudo-differential Operators and Function Spaces.- 14. Shubin’s Global Operator Calculus.- Part IV: Applications.- 15. The Schrödinger Equation.- 16. The Feichtinger Algebra.- 17. The Modulation Spaces Mqs.- 18. Bopp Pseudo-differential Operators.- 19. Applications of Bopp Quantization.- Bibliography.- Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.