Deb | Multi-Objective Optimization Using Evolutionary Algorithms | Buch | 978-0-470-74361-4 | www.sack.de

Buch, Englisch, 544 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 927 g

Deb

Multi-Objective Optimization Using Evolutionary Algorithms


1. Auflage 2009
ISBN: 978-0-470-74361-4
Verlag: Wiley

Buch, Englisch, 544 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 927 g

ISBN: 978-0-470-74361-4
Verlag: Wiley


The Wiley Paperback Series makes valuable content more accessible to a new generation of statisticians, mathematicians and scientists.

Evolutionary algorithms are very powerful techniques used to find solutions to real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run.
- Comrephensive coverage of this growing area of research.
- Carefully introduces each algorithm with examples and in-depth discussion.
- Includes many applications to real-world problems, including engineering design and scheduling.
- Includes discussion of advanced topics and future research.
- Accessible to those with limited knowledge of multi-objective optimization and evolutionary algorithms

Provides an extensive discussion on the principles of multi-objective optimization and on a number of classical approaches.

This integrated presentation of theory, algorithms and examples will benefit those working in the areas of optimization, optimal design and evolutionary computing.

Deb Multi-Objective Optimization Using Evolutionary Algorithms jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Foreword.

Preface.

Prologue.

Multi-Objective Optimization.

Classical Methods.

Evolutionary Algorithms.

Non-Elitist Multi-Objective Evolutionary Algorithms.

Elitist Multi-Objective Evolutionary Algorithms.

Constrained Multi-Objective Evolutionary Algorithms.

Salient Issues of Multi-Objective Evolutionary Algorithms.

Applications of Multi-Objective Evolutionary Algorithms.

Epilogue.

References.

Index.


Kalyanmoy Deb is an Indian computer scientist. Since 2013, Deb has held the Herman E. & Ruth J. Koenig Endowed Chair in the Department of Electrical and Computing Engineering at Michigan State University, which was established in 2001.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.