DeBonis | A Beginner's Guide to Mathematical Proof | Buch | 978-1-032-68619-6 | sack.de

Buch, Englisch, 170 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 417 g

DeBonis

A Beginner's Guide to Mathematical Proof


1. Auflage 2025
ISBN: 978-1-032-68619-6
Verlag: Taylor & Francis Ltd (Sales)

Buch, Englisch, 170 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 417 g

ISBN: 978-1-032-68619-6
Verlag: Taylor & Francis Ltd (Sales)


A Beginner’s Guide to Mathematical Proof prepares mathematics majors for the transition to abstract mathematics, as well as introducing a wider readership of quantitative science students, such as engineers, to the mathematical structures underlying more applied topics.

The text is designed to be easily utilized by both instructor and student, with an accessible, step-by-step approach requiring minimal mathematical prerequisites. The book builds towards more complex ideas as it progresses but never makes assumptions of the reader beyond the material already covered.

Features

- No mathematical prerequisites beyond high school mathematics

- Suitable for an Introduction to Proofs course for mathematics majors and other students of quantitative sciences, such as engineering

- Replete with exercises and examples

DeBonis A Beginner's Guide to Mathematical Proof jetzt bestellen!

Zielgruppe


Undergraduate Core


Autoren/Hrsg.


Weitere Infos & Material


Preface, Chapter 1 Mathematical Logic, Chapter 2 Methods of Proof, Chapter 3 Special Proof Types, Chapter 4 Foundational Mathematical Topics, References, Index


Mark DeBonis received his PhD in Mathematics from University of California, Irvine, USA. He began his career as a theoretical mathematician in the field of group theory and model theory, but in later years switched to applied mathematics, in particular to machine learning. He spent some time working for the US Department of Energy at Los Alamos National Lab as well as the US Department of Defense at the Defense Intelligence Agency as an applied mathematician of machine learning. He is at present working for the US Department of Energy at Sandia National Lab. His research interests include machine learning, statistics and computational algebra.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.