Buch, Englisch, 434 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 1010 g
Reihe: Textbooks in Mathematics
Computation, Application, and Theory
Buch, Englisch, 434 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 1010 g
Reihe: Textbooks in Mathematics
ISBN: 978-1-032-10898-8
Verlag: Chapman and Hall/CRC
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Mathematik | Informatik Mathematik Mathematik Allgemein Zahlensysteme
Weitere Infos & Material
1. Examples of Vector Spaces. 1.1. First Vector Space: Tuples. 1.2. Dot Product. 1.3. Application: Geometry. 1.4. Second Vector Space: Matrices. 1.5. Matrix Multiplication. 2. Matrices and Linear Systems. 2.1. Systems of Linear Equations. 2.2. Gaussian Elimination. 2.3. Application: Markov Chains. 2.4. Application: The Simplex Method. 2.5. Elementary Matrices and Matrix Equivalence. 2.6. Inverse of a Matrix. 2.7. Application: The Simplex Method Revisited. 2.8. Homogeneous/Nonhomogeneous Systems and Rank. 2.9. Determinant. 2.10. Applications of the Determinant. 2.11. Application: Lu Factorization. 3. Vector Spaces. 3.1. Definition and Examples. 3.2. Subspace. 3.3. Linear Independence. 3.4. Span. 3.5. Basis and Dimension. 3.6. Subspaces Associated with a Matrix. 3.7. Application: Dimension Theorems. 4. Linear Transformations. 4.1. Definition and Examples. 4.2. Kernel and Image. 4.3. Matrix Representation. 4.4. Inverse and Isomorphism. 4.5. Similarity of Matrices. 4.6. Eigenvalues and Diagonalization. 4.7. Axiomatic Determinant. 4.8. Quotient Vector Space. 4.9. Dual Vector Space. 5. Inner Product Spaces. 5.1. Definition, Examples and Properties. 5.2. Orthogonal and Orthonormal. 5.3. Orthogonal Matrices. 5.4. Application: QR Factorization. 5.5. Schur Triangularization Theorem. 5.6. Orthogonal Projections and Best Approximation. 5.7. Real Symmetric Matrices. 5.8. Singular Value Decomposition. 5.9. Application: Least Squares Optimization. 6. Applications in Data Analytics. 6.1. Introduction. 6.2. Direction of Maximal Spread. 6.3. Principal Component Analysis. 6.4. Dimensionality Reduction. 6.5. Mahalanobis Distance. 6.6. Data Sphering. 6.7. Fisher Linear Discriminant Function. 6.8. Linear Discriminant Functions in Feature Space. 6.9. Minimal Square Error Linear Discriminant Function. 7. Quadratic Forms. 7.1. Introduction to Quadratic Forms. 7.2. Principal Minor Criterion. 7.3. Eigenvalue Criterion. 7.4. Application: Unconstrained Nonlinear Optimization. 7.5. General Quadratic Forms. Appendix A. Regular Matrices. Appendix B. Rotations and Reflections in Two Dimensions. Appendix C. Answers to Selected Exercises.