Buch, Englisch, 450 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 1107 g
Buch, Englisch, 450 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 1107 g
ISBN: 978-1-108-47241-8
Verlag: Cambridge University Press
A comprehensive introduction to the most commonly used statistical methods relevant in atmospheric, oceanic and climate sciences. Each method is described step-by-step using plain language, and illustrated with concrete examples, with relevant statistical and scientific concepts explained as needed. Particular attention is paid to nuances and pitfalls, with sufficient detail to enable the reader to write relevant code. Topics covered include hypothesis testing, time series analysis, linear regression, data assimilation, extreme value analysis, Principal Component Analysis, Canonical Correlation Analysis, Predictable Component Analysis, and Covariance Discriminant Analysis. The specific statistical challenges that arise in climate applications are also discussed, including model selection problems associated with Canonical Correlation Analysis, Predictable Component Analysis, and Covariance Discriminant Analysis. Requiring no previous background in statistics, this is a highly accessible textbook and reference for students and early-career researchers in the climate sciences.
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Umweltwissenschaften Klimawandel, Globale Erwärmung
- Geowissenschaften Geologie Meteorologie, Klimatologie
- Geowissenschaften Geologie Marine Geologie, Ozeanographie (Meereskunde)
- Mathematik | Informatik Mathematik Mathematische Analysis Moderne Anwendungen der Analysis
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
Weitere Infos & Material
1. Basic Concepts in Probability and Statistics; 2. Hypothesis Tests; 3. Confidence Intervals; 4. Statistical Tests Based on Ranks; 5. Introduction to Stochastic Processes; 6. The Power Spectrum; 7. Introduction to Multivariate Methods; 8. Linear Regression: Least Squares Estimation; 9. Linear Regression: Inference; 10. Model Selection; 11. Screening: A Pitfall in Statistics; 12. Principal Component Analysis; 13. Field Significance; 14. Multivariate Linear Regression; 15. Canonical Correlation Analysis; 16. Covariance Discriminant Analysis; 17. Analysis of Variance and Predictability; 18. Predictable Component Analysis; 19. Extreme Value Theory; 20. Data Assimilation; 21. Ensemble Square Root Filters; 22. Appendix; References; Index.