Buch, Englisch, 200 Seiten, Format (B × H): 154 mm x 233 mm, Gewicht: 516 g
Buch, Englisch, 200 Seiten, Format (B × H): 154 mm x 233 mm, Gewicht: 516 g
Reihe: Institute of Mathematical Statistics Textbooks
ISBN: 978-1-108-48890-7
Verlag: Cambridge University Press
During the past half-century, exponential families have attained a position at the center of parametric statistical inference. Theoretical advances have been matched, and more than matched, in the world of applications, where logistic regression by itself has become the go-to methodology in medical statistics, computer-based prediction algorithms, and the social sciences. This book is based on a one-semester graduate course for first year Ph.D. and advanced master's students. After presenting the basic structure of univariate and multivariate exponential families, their application to generalized linear models including logistic and Poisson regression is described in detail, emphasizing geometrical ideas, computational practice, and the analogy with ordinary linear regression. Connections are made with a variety of current statistical methodologies: missing data, survival analysis and proportional hazards, false discovery rates, bootstrapping, and empirical Bayes analysis. The book connects exponential family theory with its applications in a way that doesn't require advanced mathematical preparation.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Forschungsmethodik, Wissenschaftliche Ausstattung
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
1. One-parameter exponential families; 2. Multiparameter exponential families; 3. Generalized linear models; 4. Curved exponential families, eb, missing data, and the em algorithm; 5. Bootstrap confidence intervals; Bibliography; Index.