Fearnhead / Nemeth / Oates | Scalable Monte Carlo for Bayesian Learning | Buch | 978-1-009-28844-6 | sack.de

Buch, Englisch, 247 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 518 g

Reihe: Institute of Mathematical Statistics Monographs

Fearnhead / Nemeth / Oates

Scalable Monte Carlo for Bayesian Learning


Erscheinungsjahr 2025
ISBN: 978-1-009-28844-6
Verlag: Cambridge University Press

Buch, Englisch, 247 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 518 g

Reihe: Institute of Mathematical Statistics Monographs

ISBN: 978-1-009-28844-6
Verlag: Cambridge University Press


A graduate-level introduction to advanced topics in Markov chain Monte Carlo (MCMC), as applied broadly in the Bayesian computational context. The topics covered have emerged as recently as the last decade and include stochastic gradient MCMC, non-reversible MCMC, continuous time MCMC, and new techniques for convergence assessment. A particular focus is on cutting-edge methods that are scalable with respect to either the amount of data, or the data dimension, motivated by the emerging high-priority application areas in machine learning and AI. Examples are woven throughout the text to demonstrate how scalable Bayesian learning methods can be implemented. This text could form the basis for a course and is sure to be an invaluable resource for researchers in the field.

Fearnhead / Nemeth / Oates Scalable Monte Carlo for Bayesian Learning jetzt bestellen!

Weitere Infos & Material


Preface; 1. Background; 2. Reversible MCMC and its Scaling; 3. Stochastic Gradient MCMC Algorithms; 4. Non-Reversible MCMC; 5. Continuous-Time MCMC; 6. Assessing and Improving MCMC; References; Index.


Oates, Chris J.
Chris. J. Oates leads a team working in the areas of Computational Statistics and Probabilistic Machine Learning at Newcastle University. He was awarded a Leverhulme Prize for Mathematics and Statistics in 2023, and the Guy Medal in Bronze of the Royal Statistical Society in 2024.

Sherlock, Chris
Chris Sherlock is Professor of Statistics at Lancaster University. After working in data assimilation, numerical modelling and software engineering, he was caught up in the excitement of Computationally Intensive Bayesian Statistics, obtaining a Ph.D. in the topic and now leading a group of like-minded researchers.

Nemeth, Christopher
Christopher Nemeth is Professor of Statistics at Lancaster University, working at the interface of Statistics and Machine Learning, with a focus on probabilistic modelling and the development of new computational tools for statistical inference. In 2020, he was awarded a UKRI Turing AI Fellowship to develop new algorithms for probabilistic AI.

Fearnhead, Paul
Paul Fearnhead is Professor of Statistics at Lancaster University, with research interests in Bayesian and Computational Statistics. He has been awarded Cambridge University's Adams prize, and the Guy Medals in Bronze and Silver from the Royal Statistical Society. He was elected a fellow of the International Society for Bayesian Analysis in 2024 and is currently the Editor of Biometrika.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.