Buch, Englisch, 362 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1020 g
Problem Solving Using Mathematica
Buch, Englisch, 362 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1020 g
ISBN: 978-0-8493-7379-4
Verlag: CRC Press
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.
Zielgruppe
Academic and Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Moderne Anwendungen der Analysis
Weitere Infos & Material
1. Introduction to Mathematica 2. Finite Difference Methods for Hyperbolic PDEs 3. Finite Difference Methods for Parabolic PDEs 4. Numerical Methods for Elliptic PDEs