Gao / Wang | Collaborative Computing: Networking, Applications and Worksharing | Buch | 978-3-031-93256-4 | www.sack.de

Buch, Englisch, 320 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 505 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

Gao / Wang

Collaborative Computing: Networking, Applications and Worksharing

20th EAI International Conference, CollaborateCom 2024, Wuzhen, China, November 14-17, 2024, Proceedings, Part III
Erscheinungsjahr 2025
ISBN: 978-3-031-93256-4
Verlag: Springer

20th EAI International Conference, CollaborateCom 2024, Wuzhen, China, November 14-17, 2024, Proceedings, Part III

Buch, Englisch, 320 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 505 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

ISBN: 978-3-031-93256-4
Verlag: Springer


The three-volume set LNICST 624, 625, 626 constitutes the refereed proceedings of the 20th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2024, held in Wuzhen, China, during November 14–17, 2024. 

The 62 full papers were carefully reviewed and selected from 173 submissions. They are categorized under the topical sections as follows:  

Edge computing & Task scheduling

Deep Learning and application

Blockchain applications

Security and Privacy Protection

Representation learning & Collaborative working

Graph neural networks & Recommendation systems

Federated Learning and application

Gao / Wang Collaborative Computing: Networking, Applications and Worksharing jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Graph neural networks & Recommendation systems.- Time-aware Recommendations with Motif-Enhanced Graph Learning.- Spatial-Temporal Graph Attention Networks Based on Novel Adjacency Matrix For Weather Forecasting.- Repository-Level Code Generation Method Enhanced by Context-Dependent Graph Retrieval.- DGSR: Dual-Graph Sequential Recommendation with Gated and Heterogeneous GNNs.- Disentanglement-enhanced User Representation via Domain-level Clusters for Cross-Domain Recommendation.- Adaptive Web API Recommendation via Matching Service Clusters and Mashup Requirement.- Multi-channel Heterogeneous Graph Transformer based Unsupervised Anomaly Detection Model for IoT Time Series.- CBR-FIF: A Novel Dynamic Graph Node Embedding Computation Framework.- KG-ASI: A Knowledge Graph Enhanced Model-based Retriever for Document Retrieval.- Federated Learning and application.- Free-rider Attack Based on Data-free Knowledge Distillation in Federated Learning.- Client-Oriented Energy Optimization in Clustered Federated Learning with Model Partition.- FedUDA: Towards a Novel Unfairness Distribution Attack against Federated Learning Models.- Mal-GAT: A Method to Enhance Malware Traffic Detection with Graph Attention Networks.- A Federated Learning Framework with Blockchain and Cache Pools for Unreliable Devices in a Cloud-Edge-End Environment.- Model Similarity based Clustering Federated Learning in Edge Computing.- A Privacy-Preserving Edge Caching Algorithm Based on Permissioned Blockchain and Federated Reinforcement Learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.