Goh / Tan | Evolutionary Multi-objective Optimization in Uncertain Environments | Buch | 978-3-540-95975-5 | sack.de

Buch, Englisch, 271 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1270 g

Reihe: Studies in Computational Intelligence

Goh / Tan

Evolutionary Multi-objective Optimization in Uncertain Environments

Issues and Algorithms
1. Auflage 2009
ISBN: 978-3-540-95975-5
Verlag: Springer

Issues and Algorithms

Buch, Englisch, 271 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1270 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-540-95975-5
Verlag: Springer


Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined.

The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties.

Goh / Tan Evolutionary Multi-objective Optimization in Uncertain Environments jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I: Evolving Solution Sets in the Presence of Noise.- Noisy Evolutionary Multi-objective Optimization.- Handling Noise in Evolutionary Multi-objective Optimization.- Handling Noise in Evolutionary Neural Network Design.- II: Tracking Dynamic Multi-objective Landscapes.- Dynamic Evolutionary Multi-objective Optimization.- A Coevolutionary Paradigm for Dynamic Multi-Objective Optimization.- III: Evolving Robust Solution Sets.- Robust Evolutionary Multi-objective Optimization.- Evolving Robust Solutions in Multi-Objective Optimization.- Evolving Robust Routes.- Final Thoughts.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.