Gorton / Gracio | Data-Intensive Computing | Buch | 978-0-521-19195-1 | sack.de

Buch, Englisch, 297 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 588 g

Gorton / Gracio

Data-Intensive Computing


Erscheinungsjahr 2012
ISBN: 978-0-521-19195-1
Verlag: Cambridge University Press

Buch, Englisch, 297 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 588 g

ISBN: 978-0-521-19195-1
Verlag: Cambridge University Press


The world is awash with digital data from social networks, blogs, business, science and engineering. Data-intensive computing facilitates understanding of complex problems that must process massive amounts of data. Through the development of new classes of software, algorithms and hardware, data-intensive applications can provide timely and meaningful analytical results in response to exponentially growing data complexity and associated analysis requirements. This emerging area brings many challenges that are different from traditional high-performance computing. This reference for computing professionals and researchers describes the dimensions of the field, the key challenges, the state of the art and the characteristics of likely approaches that future data-intensive problems will require. Chapters cover general principles and methods for designing such systems and for managing and analyzing the big data sets of today that live in the cloud and describe example applications in bioinformatics and cybersecurity that illustrate these principles in practice.

Gorton / Gracio Data-Intensive Computing jetzt bestellen!

Weitere Infos & Material


1. Data-intensive computing: a challenge for the twenty-first century Ian Gorton and Deborah K. Gracio; 2. The anatomy of data-intensive computing applications Ian Gorton and Deborah K. Gracio; 3. Hardware architectures for data-intensive computing problems: a case study for string matching Antonino Tumeo, Oreste Villa and Daniel Chavarria-Miranda; 4. Data management architectures Terence Critchlow, Ghaleb Abdulla, Jacek Becla, Kerstin Kleese-Van Dam, Sam Lang and Deborah L. McGuinness; 5. Large-scale data management techniques in cloud computing platforms Sherif Sakr and Anna Liu; 6. Dimension reduction for streaming data Chandrika Kamath; 7. Binary classification with support vector machines Patrick Nichols, Bobbie-Jo Webb-Robertson and Christopher Oehmen; 8. Beyond MapReduce: new requirements for scalable data processing Bill Howe; 9. Letting the data do the talking: hypothesis discovery from large-scale data sets in real time Christopher Oehmen, Scott Dowson, Wes Hatley, Justin Almquist, Bobbie-Jo Webb-Robertson, Jason McDermott, Ian Gorton and Lee Ann McCue; 10. Data-intensive visual analysis for cybersecurity William A. Pike, Daniel M. Best, Douglas V. Love and Shawn J. Bohn.


Gracio, Deborah K.
Debbie Gracio joined Pacific Northwest National Laboratory in 1990 and is currently the Director for the Computational and Statistical Analytics Division and for the Data Intensive Computing Research Initiative. Since joining the laboratory, she has led the research, development, and management of multiple cross-disciplinary, multi-laboratory projects focused in the basic sciences and national security sectors.

Gorton, Ian
Ian Gorton is a Laboratory Fellow in Computational Sciences and Math at Pacific Northwest National Laboratory (PNNL), where he manages the Data Intensive Scientific Computing Group and was the Chief Architect for PNNL's Data Intensive Computing Initiative. Gorton is a Senior Member of the IEEE Computer Society and a Fellow of the Australian Computer Society.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.