Gramacy | Surrogates | Buch | 978-1-032-24255-2 | sack.de

Buch, Englisch, 560 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1040 g

Reihe: Chapman & Hall/CRC Texts in Statistical Science

Gramacy

Surrogates

Gaussian Process Modeling, Design, and Optimization for the Applied Sciences
1. Auflage 2021
ISBN: 978-1-032-24255-2
Verlag: Chapman and Hall/CRC

Gaussian Process Modeling, Design, and Optimization for the Applied Sciences

Buch, Englisch, 560 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1040 g

Reihe: Chapman & Hall/CRC Texts in Statistical Science

ISBN: 978-1-032-24255-2
Verlag: Chapman and Hall/CRC


Surrogates: a graduate textbook, or professional handbook, on topics at the interface between machine learning, spatial statistics, computer simulation, meta-modeling (i.e., emulation), design of experiments, and optimization. Experimentation through simulation, "human out-of-the-loop" statistical support (focusing on the science), management of dynamic processes, online and real-time analysis, automation, and practical application are at the forefront.

Topics include:

- Gaussian process (GP) regression for flexible nonparametric and nonlinear modeling.

- Applications to uncertainty quantification, sensitivity analysis, calibration of computer models to field data, sequential design/active learning and (blackbox/Bayesian) optimization under uncertainty.

- Advanced topics include treed partitioning, local GP approximation, modeling of simulation experiments (e.g., agent-based models) with coupled nonlinear mean and variance (heteroskedastic) models.

- Treatment appreciates historical response surface methodology (RSM) and canonical examples, but emphasizes contemporary methods and implementation in R at modern scale.

- Rmarkdown facilitates a fully reproducible tour, complete with motivation from, application to, and illustration with, compelling real-data examples.

Presentation targets numerically competent practitioners in engineering, physical, and biological sciences. Writing is statistical in form, but the subjects are not about statistics. Rather, they’re about prediction and synthesis under uncertainty; about visualization and information, design and decision making, computing and clean code.

Gramacy Surrogates jetzt bestellen!

Zielgruppe


Postgraduate and Undergraduate Core


Autoren/Hrsg.


Weitere Infos & Material


1 Historical Perspective

2 Four Motivating Datasets

3 Steepest Ascent and Ridge Analysis
4 Space-filling Design

5 Gaussian process regression

6 Model-Based Design for GPs

7 Optimization
8 Calibration and Sensitivity

9 GP Fidelity and Scale

10 Heteroskedasticity

Appendix A Numerical Linear Algebra for Fast GPs

Appendix B An Experiment Game


Robert B. Gramacy is a professor of Statistics in the College of Science at Virginia Tech. Research interests include Bayesian modeling methodology, statistical computing, Monte Carlo inference, nonparametric regression, sequential design, and optimization under uncertainty. Bobby enjoys cycling and ice hockey, and watching his kids grow up too fast.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.