Guyon / Gunn / Nikravesh | Feature Extraction | Buch | 978-3-540-35487-1 | www.sack.de

Buch, Englisch, Band 207, 778 Seiten, Book w. online files / update, Format (B × H): 155 mm x 235 mm, Gewicht: 1364 g

Reihe: Studies in Fuzziness and Soft Computing

Guyon / Gunn / Nikravesh

Feature Extraction

Foundations and Applications
2006
ISBN: 978-3-540-35487-1
Verlag: Springer

Foundations and Applications

Buch, Englisch, Band 207, 778 Seiten, Book w. online files / update, Format (B × H): 155 mm x 235 mm, Gewicht: 1364 g

Reihe: Studies in Fuzziness and Soft Computing

ISBN: 978-3-540-35487-1
Verlag: Springer


This book is both a reference for engineers and scientists and a teaching resource, featuring tutorial chapters and research papers on feature extraction. Until now there has been insufficient consideration of feature selection algorithms, no unified presentation of leading methods, and no systematic comparisons.

Guyon / Gunn / Nikravesh Feature Extraction jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


An Introduction to Feature Extraction.- An Introduction to Feature Extraction.- Feature Extraction Fundamentals.- Learning Machines.- Assessment Methods.- Filter Methods.- Search Strategies.- Embedded Methods.- Information-Theoretic Methods.- Ensemble Learning.- Fuzzy Neural Networks.- Feature Selection Challenge.- Design and Analysis of the NIPS2003 Challenge.- High Dimensional Classification with Bayesian Neural Networks and Dirichlet Diffusion Trees.- Ensembles of Regularized Least Squares Classifiers for High-Dimensional Problems.- Combining SVMs with Various Feature Selection Strategies.- Feature Selection with Transductive Support Vector Machines.- Variable Selection using Correlation and Single Variable Classifier Methods: Applications.- Tree-Based Ensembles with Dynamic Soft Feature Selection.- Sparse, Flexible and Efficient Modeling using L 1 Regularization.- Margin Based Feature Selection and Infogain with Standard Classifiers.- Bayesian Support Vector Machines for Feature Ranking and Selection.- Nonlinear Feature Selection with the Potential Support Vector Machine.- Combining a Filter Method with SVMs.- Feature Selection via Sensitivity Analysis with Direct Kernel PLS.- Information Gain, Correlation and Support Vector Machines.- Mining for Complex Models Comprising Feature Selection and Classification.- Combining Information-Based Supervised and Unsupervised Feature Selection.- An Enhanced Selective Naïve Bayes Method with Optimal Discretization.- An Input Variable Importance Definition based on Empirical Data Probability Distribution.- New Perspectives in Feature Extraction.- Spectral Dimensionality Reduction.- Constructing Orthogonal Latent Features for Arbitrary Loss.- Large Margin Principles for Feature Selection.- Feature Extraction for Classificationof Proteomic Mass Spectra: A Comparative Study.- Sequence Motifs: Highly Predictive Features of Protein Function.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.