Buch, Englisch, Band 16, 335 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1490 g
Buch, Englisch, Band 16, 335 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1490 g
Reihe: Nonconvex Optimization and Its Applications
ISBN: 978-0-7923-4309-7
Verlag: Springer US
Industrial, financial, commercial or any kinds of project have at least one common feature: the better organized they are, the higher the profit or the lower the cost. Project management is the principle of planning different projects and keeping them on track within time, cost and resource constraints. The need for effective project management is ever-increasing. The complexity of the environment we live in requires more sophisticated methods than it did just a couple of decades ago. Project managers might face insurmountable obstacles in their work if they do not adapt themselves to the changing circumstances. On the other hand, better knowledge of project management can result in better plans, schedules and, last but not least, more contracts and more profit. This knowledge can help individuals and firms to stay alive in this competitive market and, in the global sense, utilize the finite resources of our planet in a more efficient way.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik
- Wirtschaftswissenschaften Betriebswirtschaft Management Projektmanagement
- Technische Wissenschaften Bauingenieurwesen Bauingenieurwesen
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Wirtschaftswissenschaften Betriebswirtschaft Bereichsspezifisches Management Produktionsmanagement, Qualitätskontrolle
Weitere Infos & Material
1 Introduction.- 2 CPM Scheduling.- 3 CPM Least Cost Scheduling.- 4 Precedence Diagramming.- 5 Advanced Precedence Diagramming.- 6 Precedence Diagramming With Bounded Activity Duration.- 7 PDM Least Cost Scheduling.- 8 Resources In Scheduling.- 9 Art of Scheduling.- Appendix A Mathematical Basis.- 1. Digraph.- 2. Duality Theorem of Path and Cut.- 3. Minimal Path — Maximal Potential Problem.- 4. Maximal Flow Minimal Cut.- 5. The First “K” Longest Path.- 6. Linear Programming and Duality.- 7. Practical Problems and Solutions.- Problems.- Solutions.- 8. Historical Review.- Appendix B Computer Applications.- 1. Choosing Among Available Applications.- 2. ProjectDirector.