Buch, Englisch, 300 Seiten, Format (B × H): 213 mm x 260 mm, Gewicht: 1150 g
Computation as Machine Learning
Buch, Englisch, 300 Seiten, Format (B × H): 213 mm x 260 mm, Gewicht: 1150 g
ISBN: 978-1-107-16344-7
Verlag: Cambridge University Press
Probabilistic numerical computation formalises the connection between machine learning and applied mathematics. Numerical algorithms approximate intractable quantities from computable ones. They estimate integrals from evaluations of the integrand, or the path of a dynamical system described by differential equations from evaluations of the vector field. In other words, they infer a latent quantity from data. This book shows that it is thus formally possible to think of computational routines as learning machines, and to use the notion of Bayesian inference to build more flexible, efficient, or customised algorithms for computation. The text caters for Masters' and PhD students, as well as postgraduate researchers in artificial intelligence, computer science, statistics, and applied mathematics. Extensive background material is provided along with a wealth of figures, worked examples, and exercises (with solutions) to develop intuition.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Moderne Anwendungen der Analysis
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
Weitere Infos & Material
Introduction; 1. Mathematical background; 2. Integration; 3. Linear algebra; 4. Local optimisation; 5. Global optimisation; 6. Solving ordinary differential equations; 7. The frontier; Solutions to exercises; References; Index.