Heuser | Gewöhnliche Differentialgleichungen | Buch | 978-3-519-12227-2 | sack.de

Buch, Deutsch, 628 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 1074 g

Reihe: Mathematische Leitfäden

Heuser

Gewöhnliche Differentialgleichungen

Einführung in Lehre und Gebrauch
2. Auflage 1989
ISBN: 978-3-519-12227-2
Verlag: Vieweg+Teubner Verlag

Einführung in Lehre und Gebrauch

Buch, Deutsch, 628 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 1074 g

Reihe: Mathematische Leitfäden

ISBN: 978-3-519-12227-2
Verlag: Vieweg+Teubner Verlag


Dieses Buch ist aus Vorlesungen und Übungen entstanden, die ich mehrfach an der Universität Karlsruhe für Mathematiker, Physiker, Ingenieure und Informati­ ker gehalten habe. Es ist so geschrieben, daß es zum Selbststudium dienen kann: Die Gedankengänge sind ausgiebig motiviert, die Beweise detailliert, und an durchgerechneten Beispielen und gelösten Aufgaben herrscht kein Mangel. Bei der Abfassung schwebte mir vor, nicht nur ein theoretisches Gerüst aufzubau­ en, sondern auch eine Brücke zu den Anwendungen zu schlagen. Damit wollte ich zweierlei erreichen: erstens wollte ich ganz nüchtern und pragmatisch den Stu­ denten der Mathematik auf seine spätere Zusammenarbeit mit Naturwissenschaft­ lern und Ingenieuren einstimmen und im gleichen Atemzug auch dem "Anwen­ der" den Zugang zu den Differentialgleichungen erleichtern. Zweitens wollte ich - weniger nüchtern und weniger pragmatisch - den Leser auf etwas hinweisen, das zu den Wundern und Kraftquellen unserer Kultur gehört: auf die Tatsache, daß "reines" Denken, "Hirn-Gespinst" - eben Mathematik - die reale Welt nach­ zeichnen und umgestalten kann. Das Staunen hierüber hat denn auch alle Philo­ sophen ergriffen, die nicht bloß Schwadroneure waren. Und noch Einstein fragte verwundert: "Wie ist es möglich, daß die Mathematik, letztlich doch ein Produkt menschlichen Denkens, unabhängig von der Erfahrung, den wirklichen Gegeben­ heiten so wunderbar entspricht?" Die wissenschaftliche Revolution, die uns noch immer treibt und drängt und drückt, diese sehr revolutionäre Revolution, hat im 17. Jahrhundert begonnen, und ihre Bastillestürmer waren "Hirngespinste" par ex­ cellence: Newtonsche Fluxionen und Leibnizsche Differentiale.

Heuser Gewöhnliche Differentialgleichungen jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


I Zur Einstimmung.- II Differentialgleichungen erster Ordnung.- III Existenz-, Eindeutigkeits- und Abhängigkeitssätze für Differentialgleichungen erster Ordnung.- IV Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten.- V Lineare Differentialgleichungen höherer Ordnung mit variablen Koeffizienten.- VI Rand- und Eigenwertaufgaben.- VII Systeme linearer Differentialgleichungen mit konstanten Koeffizienten.- VIII Systeme linearer Differentialgleichungen mit variablen Koeffizienten.- IX Allgemeine Systeme von Differentialgleichungen erster Ordnung. Die Differentialgleichung n-ter Ordnung.- X Qualitative Theorie. Stabilität.- Anhang 1: Tabelle unbestimmter Integrale.- Anhang 2: Tabelle zur Laplacetransformation.- Lösungen ausgewählter Aufgaben.- Symbolverzeichnis.- Namen- und Sachverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.