Buch, Deutsch, 328 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 528 g
Reihe: Springer-Lehrbuch
Buch, Deutsch, 328 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 528 g
Reihe: Springer-Lehrbuch
ISBN: 978-3-642-29411-2
Verlag: Springer
Bei dieser Einführung in die Funktionentheorie handelt es sich um eine neue Lehrform, nicht um eine klassische Darstellung. Das Buch schlägt eine Brücke zur Computeranwendung und zu Maple. Dies beeinflusst die Struktur der einzelnen Kapitel. In einem Textteil wird - teils nur skizzenartig - die zugrundeliegende Theorie dargestellt und mit sorgfältig ausgewählten Beispielen illustriert. Hieran schließt sich der "Worksheet"-Teil an, in dem der vorangehende Stoff - mit Hilfe von Maple 15 - diskutiert wird. Auf diese Weise können auch anspruchsvollere Beispiele als üblich behandelt und eindrucksvolle Graphiken erstellt werden. Anhand ausgefeilter Worksheets mit "Maple vom Feinsten" wird gezeigt, wie man mit einem Computeralgebrasystem gestalten und Ideen umsetzen kann. Da die Funktionentheorie in vielen Fächern benötigt wird, spannen zahlreiche Beispiele - etwa zur Potentialströmung, Kutta-Joukowski-Transformation und Netzgenerierung mit Hilfe konformer Abbildungen - den Bogen zu Anwendungen.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Die komplexen Zahlen. – Topologische Grundlagen.- Komplexe Differenzierbarkeit.- Kurven, Integralformel und Folgerungen.- Der globale Hauptsatz.- Laurent-Reihen, isolierte Singularitäten, Residuensatz.- Konforme Abbildungen und ihre Anwendungen.- Die Gamma-Funktion.- Anhang zu Maple.