Buch, Englisch, 500 Seiten, Format (B × H): 175 mm x 248 mm, Gewicht: 1328 g
Buch, Englisch, 500 Seiten, Format (B × H): 175 mm x 248 mm, Gewicht: 1328 g
ISBN: 978-1-107-06555-0
Verlag: Cambridge University Press
Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of climate change; and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics is covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms and deep learning, as well as the recent merging of machine learning and physics. End-of-chapter exercises allow readers to develop their problem-solving skills, and online datasets allow readers to practise analysis of real data.
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Umweltwissenschaften Umweltwissenschaften
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Geowissenschaften Geographie | Raumplanung Geodäsie, Kartographie, GIS, Fernerkundung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Geowissenschaften Geologie Geodäsie, Kartographie, Fernerkundung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Geowissenschaften Geologie Meteorologie, Klimatologie
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Geowissenschaften Umweltwissenschaften Umweltüberwachung, Umweltanalytik, Umweltinformatik
Weitere Infos & Material
1. Introduction; 2. Basics; 3. Probability distributions; 4. Statistical inference; 5. Linear regression; 6. Neural networks; 7. Nonlinear optimization; 8. Learning and generalization; 9. Principal components and canonical correlation; 10. Unsupervised learning; 11. Time series; 12. Classification; 13. Kernel methods; 14. Decision trees, random forests and boosting; 15. Deep learning; 16. Forecast verification and post-processing; 17. Merging of machine learning and physics; Appendices; References; Index.