With Data Visualizations, Regressions, and Statistics
Buch, Englisch, 243 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 400 g
ISBN: 978-1-4842-4199-8
Verlag: Apress
Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations.
What You Will Learn
- Discover R, statistics, data science, data mining, and big data
- Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions
- Work with descriptive statistics
- Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots
- Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions
Who This Book Is For
Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Betriebssysteme Linux Betriebssysteme, Open Source Betriebssysteme
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
Weitere Infos & Material
Chapter 1: Introduction Chapter Goal: To understand what is R, why use R, statistics in data mining and data scienceNo of pages 15Sub -Topics1. What is R?2. High Level and Low Level Language3. What is Statistics?4. What is Data Science?5. What is Data Mining?6. What is Text Mining?7. Three Types of Analytics8. Big Data9. Why R?10. Conclusion
Chapter 2: Getting StartedChapter Goal: To set up the computer for R ProgrammingNo of pages: 15Sub - Topics 1. What is R and RStudio?2. Installation of R and RStudio3. Integrated Development Environment4. RStudio – The IDE for R. 5. ConclusionChapter 3: Basic SyntaxChapter Goal: To learn R programming basicsNo of pages : 30Sub - Topics: 1. Writing in R Console2. Using Code Editor3. Variables and Data Types4. Vectors5. Lists6. Data Frame7. Logical Statements8. Loops9. Functions10. Conclusion
Chapter 4: Descriptive StatisticsChapter Goal: To learn Descriptive Statistics in RNo of pages: 20Sub - Topics: 1. Reading Data Files2. Mean, Median, Min, Max, …3. Percentile, Standard Deviations4. The Summary() and Str() functions5. Distributions6. Conclusion
Chapter 5: Data VisualizationsChapter Goal: To learn Data Visualizations in R No of pages: 20Sub - Topics: 1. What is Data Visualizations?2. Bar Chart, Histogram3. Line Chart, Pie Chart4. Scatterplot and Box Plot5. Scatterplot Matrix6. Decision Trees7. Conclusion
Chapter 6: Inferential Statistics and RegressionsChapter Goal: To learn inferential statistics and regressions in RNo of pages: 20Sub - Topics: 1. Correlations2. T Test, Chi Square, ANOVA3. Non Parametric Test4. Linear Regressions5. Multiple Linear Regressions




