Jebara | Machine Learning | Buch | 978-1-4020-7647-3 | sack.de

Buch, Englisch, Band 755, 200 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 4616 g

Reihe: The Springer International Series in Engineering and Computer Science

Jebara

Machine Learning

Discriminative and Generative
2004
ISBN: 978-1-4020-7647-3
Verlag: Springer US

Discriminative and Generative

Buch, Englisch, Band 755, 200 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 4616 g

Reihe: The Springer International Series in Engineering and Computer Science

ISBN: 978-1-4020-7647-3
Verlag: Springer US


Machine Learning:Discriminative and Generative covers the main contemporary themes and tools in machine learning ranging from Bayesian probabilistic models to discriminative support-vector machines. However, unlike previous books that only discuss these rather different approaches in isolation, it bridges the two schools of thought together within a common framework, elegantly connecting their various theories and making one common big-picture. Also, this bridge brings forth new hybrid discriminative-generative tools that combine the strengths of both camps. This book serves multiple purposes as well. The framework acts as a scientific breakthrough, fusing the areas of generative and discriminative learning and will be of interest to many researchers. However, as a conceptual breakthrough, this common framework unifies many previously unrelated tools and techniques and makes them understandable to a larger portion of the public. This gives the more practical-minded engineer, student and the industrial public an easy-access and more sensible road map into the world of machine learning.

Machine Learning: Discriminative and Generative is designed for an audience composed of researchers & practitioners in industry and academia. The book is also suitable as a secondary text for graduate-level students in computer science and engineering.

Jebara Machine Learning jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction.- 2. Generative Versus Discriminative Learning.- 3. Maximum Entropy Discrimination.- 4. Extensions to Med.- 5. Latent Discrimination.- 6. Conclusion.- 7. Appendix.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.