Jiang | Machine Learning and Intelligent Communications | Buch | 978-3-031-04408-3 | www.sack.de

Buch, Englisch, Band 438, 352 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 557 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

Jiang

Machine Learning and Intelligent Communications

6th EAI International Conference, MLICOM 2021, Virtual Event, November 2021, Proceedings
1. Auflage 2022
ISBN: 978-3-031-04408-3
Verlag: Springer International Publishing

6th EAI International Conference, MLICOM 2021, Virtual Event, November 2021, Proceedings

Buch, Englisch, Band 438, 352 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 557 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

ISBN: 978-3-031-04408-3
Verlag: Springer International Publishing


This volume constitutes the refereed post-conference proceedings of the 6th International Conference on Machine Learning and Intelligent Communications, MLICOM 2021, held in November 2021. Due to COVID-19 pandemic the conference was held virtually.

The 28 revised full papers were carefully selected from 58 submissions. The papers are organized thematically in tracks as follows: internet of vehicle communication system; applications of neural network and deep learning; intelligent massive MIMO communications; intelligent positioning and navigation systems; intelligent space and terrestrial integrated networks; machine learning algorithms and intelligent networks; image information processing.

Jiang Machine Learning and Intelligent Communications jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Deep learning network for Frequency offset Cancellation in OFDM communication system.- Research on the Rising Phenomenons in the Bit Error Rate Performances of LT-Based UEP codes.- Ensemble Classification Technique for Cultural Heritage Image.- Power Allocation for Sum Rate Maximization of Uplink Massive MIMO System with Maximum Ratio Combining.- Research on Indoor Passive Location Based on LoRa Fingerprint.- Application of Dijkstra algorithm in optimal route selection under the background of TPACK education model.- The Wave Filter Design of UFMC Vehicle Communication System.- Research on Image Binary Classification Based on Fast Style Transfer Data Enhancement.- 3DCNN Backed Conv-LSTM Auto Encoder for Micro Facial Expression Video Recognition.- Research on charge and discharge control strategy of supercapacitor.- Intelligent wheelchair based on medical health examination.- Research on Forest Fire Image Recognition System in Northeast Forest Region Based on Machine Vision.- Researchon Face Image Restoration Method Based on Improved WGAN.- Research on text communication security based on deep learning model.- Elimination of Network Intrusion using Advance Data Mining Technology.- Automatic Detection and Classification of Anti-Islamic Web Text-Contents.- Deep Learning Technique for Dessert Plant Classification and Recognition.- Sparse Algorithm for OFDM Underwater Acoustic Channel Estimation.- Improvement of CLAlgorithm in MIMO-OFDM System.- SD-based low-complexity signal detection algorithm in massive MIMO.- Improved YOLOv4 infrared image pedestrian detection algorithm.- Research on ECG Classification Method Based on Convolutional Neural Network.- A Servey on Meta-learning Based Few-shotClassification.- Image Retrieval Algorithm Based on Fractal Coding.- Research on Fractal Image Coding Method Based on SNAM Segmentation Scheme.- Aircraft Detection In Aerial Remote Sensing Images Based On Contrast Self-supervised Learning.- Fast fractal image compression algorithmbased on compression perception.- Color Image Fast Encryption Algorithm Based on JPEG encoding.- Review of Research on Speech Emotion Recognition.- Concentration Prediction Based on mRMRXGBoost Model.- An improved crowd counting method based on YOLOv3.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.