Jonsson | Simplicial Complexes of Graphs | Buch | 978-3-540-75858-7 | sack.de

Buch, Englisch, Band 1928, 382 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 604 g

Reihe: Lecture Notes in Mathematics

Jonsson

Simplicial Complexes of Graphs


2008
ISBN: 978-3-540-75858-7
Verlag: Springer Berlin Heidelberg

Buch, Englisch, Band 1928, 382 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 604 g

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-540-75858-7
Verlag: Springer Berlin Heidelberg


A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology.

Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.

Jonsson Simplicial Complexes of Graphs jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


and Basic Concepts.- and Overview.- Abstract Graphs and Set Systems.- Simplicial Topology.- Tools.- Discrete Morse Theory.- Decision Trees.- Miscellaneous Results.- Overview of Graph Complexes.- Graph Properties.- Dihedral Graph Properties.- Digraph Properties.- Main Goals and Proof Techniques.- Vertex Degree.- Matchings.- Graphs of Bounded Degree.- Cycles and Crossings.- Forests and Matroids.- Bipartite Graphs.- Directed Variants of Forests and Bipartite Graphs.- Noncrossing Graphs.- Non-Hamiltonian Graphs.- Connectivity.- Disconnected Graphs.- Not 2-connected Graphs.- Not 3-connected Graphs and Beyond.- Dihedral Variants of k-connected Graphs.- Directed Variants of Connected Graphs.- Not 2-edge-connected Graphs.- Cliques and Stable Sets.- Graphs Avoiding k-matchings.- t-colorable Graphs.- Graphs and Hypergraphs with Bounded Covering Number.- Open Problems.- Open Problems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.