Joshi | Machine Learning and Artificial Intelligence | Buch | 978-3-030-26624-0 | www.sack.de

Buch, Englisch, 261 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 435 g

Joshi

Machine Learning and Artificial Intelligence


1. Auflage 2020
ISBN: 978-3-030-26624-0
Verlag: Springer International Publishing

Buch, Englisch, 261 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 435 g

ISBN: 978-3-030-26624-0
Verlag: Springer International Publishing


This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. 

The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible.

  • Presents a full reference to artificial intelligence and machine learning techniques - in theory and application;
  • Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible;
  • Connects all ML and AI techniques to applications and introduces implementations.
Joshi Machine Learning and Artificial Intelligence jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Part I Introduction to AI and ML.- Essential concepts in AL and ML.- Part II Techniques for Static Machine Learning Models.- Perceptron and Neural Networks.- Decision Trees.- Advanced Decision Trees.- Support Vector Machines.- Probabilistic Models.- Deep Learning.- Part III Techniques for Dynamic Machine Learning Models.- Autoregressive and Moving Average Models.- Hidden Markov Models and Conditional Random Fields.- Recurrent Neural Networks.- Part IV Applications.- Classification Regression.- Ranking.- Clustering.- Recommendations.- Next Best Actions.- Designing ML Pipelines.- Using ML Libraries.- Azure Machine Learning Studio.- Conclusions.


Dr. Ameet Joshi received his PhD from Michigan State University in 2006. He has over 15 years of experience in developing machine learning algorithms in various different industrial settings including Pipeline Inspection, Home Energy Disaggregation, Microsoft Cortana Intelligence and Business Intelligence in CRM. He is currently a Data Science Manager at Microsoft. Previously, he has worked as Machine Learning Specialist at Belkin International and a Director of Research at Microline Technology Corp. He is a member of several technical committees, has published in numerous conference and journal publications and contributed to edited books. He also has two patents and have received several industry awards including and Senior Membership of IEEE (which only 8% of members achieve).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.