Kaganovskiy | Applied Statistics with Python | Buch | 978-1-032-75193-1 | sack.de

Buch, Englisch, 320 Seiten, Format (B × H): 160 mm x 237 mm, Gewicht: 626 g

Kaganovskiy

Applied Statistics with Python

Volume I: Introductory Statistics and Regression
1. Auflage 2025
ISBN: 978-1-032-75193-1
Verlag: Taylor & Francis Ltd

Volume I: Introductory Statistics and Regression

Buch, Englisch, 320 Seiten, Format (B × H): 160 mm x 237 mm, Gewicht: 626 g

ISBN: 978-1-032-75193-1
Verlag: Taylor & Francis Ltd


Applied Statistics with Python: Volume I: Introductory Statistics and Regression concentrates on applied and computational aspects of statistics, focusing on conceptual understanding and Python-based calculations. Based on years of experience teaching introductory and intermediate Statistics courses at Touro University and Brooklyn College, this book compiles multiple aspects of applied statistics, teaching the reader useful skills in statistics and computational science with a focus on conceptual understanding. This book does not require previous experience with statistics and Python, explaining the basic concepts before developing them into more advanced methods from scratch. Applied Statistics with Python is intended for undergraduate students in business, economics, biology, social sciences, and natural science, while also being useful as a supplementary text for more advanced students.

Key Features:

- Concentrates on more introductory topics such as descriptive statistics, probability, probability distributions, proportion and means hypothesis testing, as well as one-variable regression

- The book’s computational (Python) approach allows us to study Statistics much more effectively. It removes the tedium of hand/calculator computations and enables one to study more advanced topics

- Standardized sklearn Python package gives efficient access to machine learning topics

- Randomized homework as well as exams are provided in the author’s course shell on My Open Math web portal (free)

Kaganovskiy Applied Statistics with Python jetzt bestellen!

Zielgruppe


Postgraduate, Undergraduate Advanced, and Undergraduate Core


Autoren/Hrsg.


Weitere Infos & Material


Preface  1. Introduction  2. Descriptive Data Analysis  3. Probability  4. Probability Distributions  5. Inferential Statistics and Tests for Proportions  6. Goodness of Fit and Contingency Tables  7. Inference for Means  8. Correlation and Regression


Leon Kaganovskiy is an Associate Professor at the Mathematics Department of Touro College. He received a M.S. in Theoretical Physics from Kharkov State University, and M.S. and PhD in Applied Mathematics from the University of Michigan. His most recent interest is in a broad field of Applied Statistics, and he has developed new courses in Bio-Statistics with R, Statistics for Actuaries with R, and Business Analytics with R. He teaches Statistics research courses at the Graduate Program in Speech-Language Pathology at Touro College.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.