Buch, Englisch, 470 Seiten, Format (B × H): 159 mm x 235 mm, Gewicht: 1520 g
Reihe: Modern Birkhäuser Classics
Buch, Englisch, 470 Seiten, Format (B × H): 159 mm x 235 mm, Gewicht: 1520 g
Reihe: Modern Birkhäuser Classics
ISBN: 978-0-8176-4912-8
Verlag: Birkhauser Boston
is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology.
The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Geometrie Elementare Geometrie: Allgemeines
- Mathematik | Informatik Mathematik Topologie Mengentheoretische Topologie
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
Weitere Infos & Material
Three-Dimensional Topology.- Thurston Norm.- Geometry of Hyperbolic Space.- Kleinian Groups.- Teichmüller Theory of Riemann Surfaces.- to Orbifold Theory.- Complex Projective Structures.- Sociology of Kleinian Groups.- Ultralimits of Metric Spaces.- to Group Actions on Trees.- Laminations, Foliations, and Trees.- Rips Theory.- Brooks’ Theorem and Circle Packings.- Pleated Surfaces and Ends of Hyperbolic Manifolds.- Outline of the Proof of the Hyperbolization Theorem.- Reduction to the Bounded Image Theorem.- The Bounded Image Theorem.- Hyperbolization of Fibrations.- The Orbifold Trick.- Beyond the Hyperbolization Theorem.




