Karr | Probability | Buch | 978-0-387-94071-7 | www.sack.de

Buch, Englisch, 283 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1360 g

Reihe: Springer Texts in Statistics

Karr

Probability


1993
ISBN: 978-0-387-94071-7
Verlag: Springer

Buch, Englisch, 283 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1360 g

Reihe: Springer Texts in Statistics

ISBN: 978-0-387-94071-7
Verlag: Springer


This book offers a straightforward introduction to the mathematical theory of probability. It presents the central results and techniques of the subject in a complete and self-contained account. As a result, the emphasis is on giving results in simple forms with clear proofs and to eschew more powerful forms of theorems which require technically involved proofs. Throughout there are a wide variety of exercises to illustrate and to develop ideas in the text.

Karr Probability jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Prelude: Random Walks.- The Model.- Issues and Approaches.- Functional of the Random Walk.- Limit Theorems.- Summary.- 1 Probability.- 1.1 Random Experiments and Sample Spaces.- 1.2 Events and Classes of Sets.- 1.3 Probabilities and Probability Spaces.- 1.4 Probabilities on R.- 1.5 Conditional Probability Given a Set.- 1.6 Complements.- 1.7 Exercises.- 2 Random Variables.- 2.1 Fundamentals.- 2.2 Combining Random Variables.- 2.3 Distributions and Distribution Functions.- 2.4 Key Random Variables and Distributions.- 2.5 Transformation Theory.- 2.6 Random Variables with Prescribed Distributions.- 2.7 Complements.- 2.8 Exercises.- 3 Independence.- 3.1 Independent Random Variables.- 3.2 Functions of Independent Random Variables.- 3.3 Constructing Independent Random Variables.- 3.4 Independent Events.- 3.5 Occupancy Models.- 3.6 Bernoulli and Poisson Processes.- 3.7 Complements.- 3.8 Exercises.- 4 Expectation.- 4.1 Definition and Fundamental Properties.- 4.2 Integrals with respect to Distribution Functions.- 4.3 Computation of Expectations.- 4.4 LP Spaces and Inequalities.- 4.5 Moments.- 4.6 Complements.- 4.7 Exercises.- 5 Convergence of Sequences of Random Variables.- 5.1 Modes of Convergence.- 5.2 Relationships Among the Modes.- 5.3 Convergence under Transformations.- 5.4 Convergence of Random Vectors.- 5.5 Limit Theorems for Bernoulli Summands.- 5.6 Complements.- 5.7 Exercises.- 6 Characteristic Functions.- 6.1 Definition and Basic Properties.- 6.2 Inversion and Uniqueness Theorems.- 6.3 Moments and Taylor Expansions.- 6.4 Continuity Theorems and Applications.- 6.5 Other Transforms.- 6.6 Complements.- 6.7 Exercises.- 7 Classical Limit Theorems.- 7.1 Series of Independent Random Variables.- 7.2 The Strong Law of Large Numbers.- 7.3 The Central Limit Theorem.- 7.4 The Law ofthe Iterated Logarithm.- 7.5 Applications of the Limit Theorems.- 7.6 Complements.- 7.7 Exercises.- 8 Prediction and Conditional Expectation.- 8.1 Prediction in L2.- 8.2 Conditional Expectation Given a Finite Set of Random Variables.- 8.3 Conditional Expectation for X?L2.- 8.4 Positive and Integrable Random Variables.- 8.5 Conditional Distributions.- 8.6 Computational Techniques.- 8.7 Complements.- 8.8 Exercises.- 9 Martingales.- 9.1 Fundamentals.- 9.2 Stopping Times.- 9.3 Optional Sampling Theorems.- 9.4 Martingale Convergence Theorems.- 9.5 Applications of Convergence Theorems.- 9.6 Complements.- 9.7 Exercises.- A Notation.- B Named Objects.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.