Buch, Englisch, 623 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1990 g
Reihe: Classics in Mathematics
Buch, Englisch, 623 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1990 g
Reihe: Classics in Mathematics
ISBN: 978-3-540-58661-6
Verlag: Springer Berlin Heidelberg
From the reviews: "[…] An excellent textbook in the theory of linear operators in Banach and Hilbert spaces. It is a thoroughly worthwhile reference work both for graduate students in functional analysis as well as for researchers in perturbation, spectral, and scattering theory. […] I can recommend it for any mathematician or physicist interested in this field." Zentralblatt MATH
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
One Operator theory in finite-dimensional vector spaces.- § 1. Vector spaces and normed vector spaces.- § 2. Linear forms and the adjoint space.- § 3. Linear operators.- § 4. Analysis with operators.- § 5. The eigenvalue problem.- § 6. Operators in unitary spaces.- Two Perturbation theory in a finite-dimensional space.- § 1. Analytic perturbation of eigenvalues.- § 2. Perturbation series.- § 3. Convergence radii and error estimates.- §. Similarity transformations of the eigenspaces and eigenvectors.- § 5. Non-analytic perturbations.- § 6. Perturbation of symmetric operators.- Three Introduction to the theory of operators in Banach spaces.- § 1. Banach spaces.- § 2. Linear operators in Banach spaces.- § 3. Bounded operators.- § 4. Compact operators.- § 5. Closed operators.- § 6. Resolvents and spectra.- Four Stability theorems.- §1. Stability of closedness and bounded invertibility.- § 2. Generalized convergence of closed operators.- § 3. Perturbation of the spectrum.- § 4. Pairs of closed linear manifolds.- § 5. Stability theorems for semi-Fredholm operators.- § 6. Degenerate perturbations.- Five Operators in Hilbert spaces.- § 1. Hilbert space.- § 2. Bounded operators in Hilbert spaces.- § 3. Unbounded operators in Hilbert spaces.- § 4. Perturbation of self adjoint operators.- § 5. The Schrödinger and Dirac operators.- Six Sesquilinear forms in Hilbert spaces and associated operators.- § 1. Sesquilinear and quadratic forms.- § 2. The representation theorems.- § 3. Perturbation of sesquilinear forms and the associated operators.- § 4. Quadratic forms and the Schrödinger operators.- § 5. The spectral theorem and perturbation of spectral families.- Seven Analytic perturbation theory.- § 1. Analytic families of operators.- § 2.Holomorphic families of type (A).- § 3. Selfadjoint holomorphic families.- § 4. Holomorphic families of type (B).- § 5. Further problems of analytic perturbation theory.- § 6. Eigenvalue problems in the generalized form.- Eight Asymptotic perturbation theory.- § 1. Strong convergence in the generalized sense.- § 2. Asymptotic expansions.- § 3. Generalized strong convergence of sectorial operators.- § 4. Asymptotic expansions for sectorial operators.- § 5. Spectral concentration.- Nine Perturbation theory for semigroups of operators.- § 1. One-parameter semigroups and groups of operators.- § 2. Perturbation of semigroups.- § 3. Approximation by discrete semigroups.- Ten Perturbation of continuous spectra and unitary equivalence.- §1. The continuous spectrum of a selfadjoint operator.- § 2. Perturbation of continuous spectra.- § 3. Wave operators and the stability of absolutely continuous spectra.- § 4. Existence and completeness of wave operators.- § 5. A stationary method.- Supplementary Notes.- Supplementary Bibliography.- Notation index.- Author index.




